• Title/Summary/Keyword: Segmentation algorithm

Search Result 1,332, Processing Time 0.024 seconds

Color Image Segmentation for Region-Based Image Retrieval (영역기반 이미지 검색을 위한 칼라 이미지 세그멘테이션)

  • Whang, Whan-Kyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.1
    • /
    • pp.11-24
    • /
    • 2008
  • Region-based image retrieval techniques, which divide image into similar regions having similar characteristics and examine similarities among divided regions, were proposed to support an efficient low-dimensional color indexing scheme. However, color image segmentation techniques are required additionally. The problem of segmentation is difficult because of a large variety of color and texture. It is known to be difficult to identify image regions containing the same color-texture pattern in natural scenes. In this paper we propose an automatic color image segmentation algorithm. The colors in each image are first quantized to reduce the number of colors. The gray level of image representing the outline edge of image is constructed in terms of Fisher's multi-class linear discriminant on quantized images. The gray level of image is transformed into a binary edge image. The edge showing the outline of the binary edge image links to the nearest edge if disconnected. Finally, the final segmentation image is obtained by merging similar regions. In this paper we design and implement a region-based image retrieval system using the proposed segmentation. A variety of experiments show that the proposed segmentation scheme provides good segmentation results on a variety of images.

Knee Articular Cartilage Segmentation with Priors Based On Gaussian Kernel Level Set Algorithm (사전정보를 이용한 가우시안 커널 레벨 셋 알고리즘 기반 무릎 관절 연골 자기공명영상 분할기법)

  • Ahn, Chunsoo;Bui, Toan;Lee, Yong-Woo;Shin, Jitae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.6
    • /
    • pp.490-496
    • /
    • 2014
  • The thickness of knee joint cartilage causes most diseases of knee. Therefore, an articular cartilage segmentation of knee magnetic resonance imaging (MRI) is required to diagnose a knee diagnosis correctly. In particular, fully automatic segmentation method of knee joint cartilage enables an effective diagnosis of knee disease. In this paper, we analyze a well-known level-set based segmentation method in brain MRI, and apply that method to knee MRI with solving some problems from different image characteristics. The proposed method, a fully automatic segmentation in whole process, enables to process faster than previous semi-automatic segmentation methods. Also it can make a three-dimension visualization which provides a specialist with an assistance for the diagnosis of knee disease. In addition, the proposed method provides more accurate results than the existing methods of articular cartilage segmentation in knee MRI through experiments.

Automated Segmentation of Left Ventricular Myocardium on Cardiac Computed Tomography Using Deep Learning

  • Hyun Jung Koo;June-Goo Lee;Ji Yeon Ko;Gaeun Lee;Joon-Won Kang;Young-Hak Kim;Dong Hyun Yang
    • Korean Journal of Radiology
    • /
    • v.21 no.6
    • /
    • pp.660-669
    • /
    • 2020
  • Objective: To evaluate the accuracy of a deep learning-based automated segmentation of the left ventricle (LV) myocardium using cardiac CT. Materials and Methods: To develop a fully automated algorithm, 100 subjects with coronary artery disease were randomly selected as a development set (50 training / 20 validation / 30 internal test). An experienced cardiac radiologist generated the manual segmentation of the development set. The trained model was evaluated using 1000 validation set generated by an experienced technician. Visual assessment was performed to compare the manual and automatic segmentations. In a quantitative analysis, sensitivity and specificity were calculated according to the number of pixels where two three-dimensional masks of the manual and deep learning segmentations overlapped. Similarity indices, such as the Dice similarity coefficient (DSC), were used to evaluate the margin of each segmented masks. Results: The sensitivity and specificity of automated segmentation for each segment (1-16 segments) were high (85.5-100.0%). The DSC was 88.3 ± 6.2%. Among randomly selected 100 cases, all manual segmentation and deep learning masks for visual analysis were classified as very accurate to mostly accurate and there were no inaccurate cases (manual vs. deep learning: very accurate, 31 vs. 53; accurate, 64 vs. 39; mostly accurate, 15 vs. 8). The number of very accurate cases for deep learning masks was greater than that for manually segmented masks. Conclusion: We present deep learning-based automatic segmentation of the LV myocardium and the results are comparable to manual segmentation data with high sensitivity, specificity, and high similarity scores.

Fast RSST Algorithm Using Link Classification and Elimination Technique (가지 분류 및 제거기법을 이용한 고속 RSST 알고리듬)

  • Hong, Won-Hak
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.43-51
    • /
    • 2006
  • Segmentation method using RSST has many advantages in extracting of accurate region boundaries and controlling the resolution of segmented result and so on. In this paper, we propose three fast RSST algorithms for image segmentation. In first method, we classify links according to weight size for fast link search. In the second method, very similar links before RSST construction are eliminated. In third method, the links of very small regions which are not important for human eye are eliminated. As a result, the total times elapsed for segmentation are reduced by about 10 $\sim$ 40 times, and reconstructed images based on the segmentation results show little degradation of PSNR and visual quality.

2D to 3D Conversion Using The Machine Learning-Based Segmentation And Optical Flow (학습기반의 객체분할과 Optical Flow를 활용한 2D 동영상의 3D 변환)

  • Lee, Sang-Hak
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • In this paper, we propose the algorithm using optical flow and machine learning-based segmentation for the 3D conversion of 2D video. For the segmentation allowing the successful 3D conversion, we design a new energy function, where color/texture features are included through machine learning method and the optical flow is also introduced in order to focus on the regions with the motion. The depth map are then calculated according to the optical flow of segmented regions, and left/right images for the 3D conversion are produced. Experiment on various video shows that the proposed method yields the reliable segmentation result and depth map for the 3D conversion of 2D video.

Scale Space Filtering based Parameters Estimation for Image Region Segmentation (영상 영역 분할을 위한 스케일 스페이스 필터링 기반 파라미터 추정)

  • Im, Jee-Young;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.2 no.2
    • /
    • pp.21-28
    • /
    • 1996
  • The nature of complexity of medical images makes them difficult to segment using standard techniques. Therefore the usual approaches to segment images continue to predominantly involve manual interaction. But it tediously consumes a good deal of time and efforts of the experts. Hereby a nonmanual parameters estimation which can replace the manual interaction is needed to solve the problem of redundant manual works for an image segmentation. This paper attempts to estimate parameters for an image region segmentation using Scale Space Filtering. This attempt results in estimating the number of regions, their boundary and each representatives to be segmented 2-dimensionally and 3-dimensionally. Using this algorithm, we may diminish the problem of wasted time and efforts for finding prerequisite segmentation parameters, and lead the relatively reasonable result of region segmentation.

  • PDF

Motion Parameter Estimation and Segmentation with Probabilistic Clustering (활률적 클러스터링에 의한 움직임 파라미터 추정과 세그맨테이션)

  • 정차근
    • Journal of Broadcast Engineering
    • /
    • v.3 no.1
    • /
    • pp.50-60
    • /
    • 1998
  • This paper addresses a problem of extraction of parameteric motion estimation and structural motion segmentation for compact image sequence representation and object-based generic video coding. In order to extract meaningful motion structure from image sequences, a direct parameteric motion estimation based on a pre-segmentation is proposed. The pre-segmentation which considers the motion of the moving objects is canied out based on probabilistic clustering with mixture models using optical flow and image intensities. Parametric motion segmentation can be obtained by iterated estimation of motion model parameters and region reassignment according to a criterion using Gauss-Newton iterative optimization algorithm. The efficiency of the proposed methoo is verified with computer simulation using elF real image sequences.

  • PDF

Linear Feature Extraction from Satellite Imagery using Discontinuity-Based Segmentation Algorithm

  • Niaraki, Abolghasem Sadeghi;Kim, Kye-Hyun;Shojaei, Asghar
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.643-646
    • /
    • 2006
  • This paper addresses the approach to extract linear features from satellite imagery using an efficient segmentation method. The extraction of linear features from satellite images has been the main concern of many scientists. There is a need to develop a more capable and cost effective method for the Iranian map revision tasks. The conventional approaches for producing, maintaining, and updating GIS map are time consuming and costly process. Hence, this research is intended to investigate how to obtain linear features from SPOT satellite imagery. This was accomplished using a discontinuity-based segmentation technique that encompasses four stages: low level bottom-up, middle level bottom-up, edge thinning and accuracy assessment. The first step is geometric correction and noise removal using suitable operator. The second step includes choosing the appropriate edge detection method, finding its proper threshold and designing the built-up image. The next step is implementing edge thinning method using mathematical morphology technique. Lastly, the geometric accuracy assessment task for feature extraction as well as an assessment for the built-up result has been carried out. Overall, this approach has been applied successfully for linear feature extraction from SPOT image.

  • PDF

Segmentation of Color Image by Subtractive and Gravity Fuzzy C-means Clustering (차감 및 중력 fuzzy C-means 클러스터링을 이용한 칼라 영상 분할에 관한 연구)

  • Jin, Young-Goun;Kim, Tae-Gyun
    • Journal of IKEEE
    • /
    • v.1 no.1 s.1
    • /
    • pp.93-100
    • /
    • 1997
  • In general, fuzzy C-means clustering method was used on the segmentation of true color image. However, this method requires number of clusters as an input. In this study, we suggest new method that uses subtractive and gravity fuzzy C-means clustering. We get number of clusters and initial cluster centers by applying subtractive clustering on color image. After coarse segmentation of the image, we apply gravity fuzzy C-means for optimizing segmentation of the image. We show efficiency of the proposed algorithm by qualitative evaluation.

  • PDF

Video object segmentation and frame preprocessing for real-time and high compression MPEG-4 encoding (실시간 고압축 MPEG-4 부호화를 위한 비디오 객체 분할과 프레임 전처리)

  • 김준기;이호석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.2C
    • /
    • pp.147-161
    • /
    • 2003
  • Video object segmentation is one of the core technologies for content-based real-time MPEG-4 encoding system. For real-time requirement, the segmentation algorithm should be fast and accurate but almost all existing algorithms are computationally intensive and not suitable for real-time applications. The MPEG-4 VM(Verification Model) has provided basic algorithms for MPEG-4 encoding but it has many limitations in practical software development, real-time camera input system and compression efficiency. In this paper, we implemented the preprocessing system for real-time camera input and VOP extraction for content-based video coding and also implemented motion detection to achieve the 180 : 1 compression rate for real-time and high compression MPEG-4 encoding.