• 제목/요약/키워드: Segmentation algorithm

검색결과 1,345건 처리시간 0.033초

지형식별정보를 이용한 입체위성영상매칭 (Stereo Matching For Satellite Images using The Classified Terrain Information)

  • 방수남;조봉환
    • 대한공간정보학회지
    • /
    • 제4권1호
    • /
    • pp.93-102
    • /
    • 1996
  • 수치표고모델(DEM, Digital Elevation Model)을 컴퓨터를 이용하여 자동으로 생성할 때 입체영상매칭(stereo matching) 연산은 많은 수행시간이 소요된다. 매칭연산은 일반적으로 상관계수(correlation)에 의한 방법이 사용되고 있으며, 매칭점 분포가 균등한 지역기반방식(area-based method)이 주로 이용되고 있다. 본 논문에서는 지형을 식별하여 매칭연산에서 검색영역(search area)과 기준윈도우(mask window)의 크기를 조정하여 효율적인 매칭을 수행하는 방안을 제시하였다. 영상을 분할하기 위하여 경계보호평활화 필터(edge-preserving smoothing filter)를 사용하여 전처리를 수행하였으며, 필터를 거친 영상에 대해서 영역성장 알고리듬을 적용하였다. 분할된 영역은 MRF(Markov Random Field) 모델에 의한 식별과정을 통하여 산악, 평야, 수계지역으로 식별된다. 영상매칭은 예비시차(predicted parallex) 계산과 상세매칭(fine matching)의 두 단계를 거치며, 예비시차를 이용하여 상세매칭단계에서 검색영역의 위치를 결정한다. 검색영역과 기준윈도우의 크기는 화소에 대한 지형식별정보에 의해 결정된다. 주변화소와 시차가 유사한 평야지역과 수계지역의 검색영역을 축소함으로서 매칭연산시간을 단축시켰다. 대전-금산지역의 $10km{\times}10km(1024{\times}1024)$ 영상을 4개 사용하여 실험한 결과 지형식별정보를 이용하지 않았을 경우보다 영상매칭 수행시간이 $25%{\times}35%$정도 단축시킬 수 있음을 보였다.

  • PDF

DIR 영상을 이용한 피질두께 측정: GRAPPA 인자 2를 이용한 비교 (Cortical Thickness Estimation Using DIR Imaging with GRAPPA Factor 2)

  • 최나래;남윤호;김동현
    • Investigative Magnetic Resonance Imaging
    • /
    • 제14권1호
    • /
    • pp.56-63
    • /
    • 2010
  • 목적 : 본 논문에서는 DIR 영상을 이용하여 두뇌의 피질두께측정 연구를 수행하는 한편 평행 영상기법 중 하나인 GRAPPA (generalized autocalibrating partially parallel acquisitions)를 이용하여 GRAPPA 인자 (reduction factor, R)가 2일 때와 평행 영상기법을 이용하지 않았을 때의 결과 비교를 통해 3D DIR 영상의 획득시간 단축 가능성을 제시하고자 한다. 대상 및 방법 : 3.0T 자기공명영상장치 (Siemens Tim Trio MRI scanner)의 3D DIR 펄스열을 이용하여 6명(남자 3명, 여자 3명, $25.33{\pm}2.25$살)의 정상인 뇌에 대한 3차원 영상을 얻었다. GRAPPA 시뮬레이션은 R=2 일 때를 가정하여 수행되었고 두뇌 피질두께측정을 위해 Analyze 9.0과 Freesurfer v.4.3.0 프로그램을 사용하였다. 결과로 얻은 데이터를 T-검증을 이용하여 비교분석 하였다. 결과 : GRAPPA 기법을 통하여 복원한 영상이 잡음이 증가하는 경향을 보였으나 두뇌 피질두께 측정에는 별다른 영향을 미치지 않았다. 통계분석을 통해 비교한 결과 대부분의 두뇌 영역에서 참조영상과 GRAPPA 기법을 이용한 영상의 차이가 유의하지 않았다. 결론 : 피질두께측정 연구에 있어서 3D DIR영상의 문제점 중 하나는 긴 영상획득시간이다. 따라서 평행영상 기법 중 하나인 GRAPPA 영상기법을 적용하면 피질두께측정 연구결과의 큰 차이없이 영상 획득 시간을 단축시킬 수 있다.

빅데이터 기반 소비자 유형별 농식품 추천시스템 구축 사례 (Case Study of Big Data-Based Agri-food Recommendation System According to Types of Customers)

  • 문정훈;장익훈;최영찬;김진교;박진
    • 한국통신학회논문지
    • /
    • 제40권5호
    • /
    • pp.903-913
    • /
    • 2015
  • 농림수산식품교육문화정보원에서는 2015년 1월부터 공공데이터 포털 서비스를 시작하였으며 포털 내에 구축된 빅데이터 기반 농식품 추천 시스템을 이용한 맞춤소비정보를 제공하고 있다. 추천시스템의 특징은 첫째, SNS오피니언마이닝, 소비자패널의 모든 구매내역 정보, 기후데이터, 도매가격 데이터와 같은 빅데이터의 성격을 가진 농식품분야의 다양한 데이터들을 이용하기 때문에 데이터 양의 관점에서 추천의 정확도를 높일 수 있다. 둘째, 추천시스템 구축 초기에는 사용자 정보 기반 추천이 어려운 한계를 극복할 수 있는 방법으로 식생활 라이프스타일과 메가트렌드 요인을 이용한 소비자 세분화방법을 사용한다. 이는 사용자 개인정보가 없는 상황에서도 다양한 식품 선호를 반영할 수 있도록 하여 추천실패율을 낯춘다. 셋째, 디리슐레-다항분포를 이용하는 추천 알고리즘을 적용하여 다양한 상황적 요인들의 선호가 반영된 농식품 추천이 가능하도록 하였다. 이 외에도 추천 농식품에 대한 SNS 맛집정보와 버즈량, 관련 식재료를 판매하는 주변 소매점 위치 및 가격정보 등 다양한 정보를 제공하여 농식품 분야 정보에 관심을 높일 수 있도록 시스템을 구현하였다.

Three Dimensional Measurement of Ideal Trajectory of Pedicle Screws of Subaxial Cervical Spine Using the Algorithm Could Be Applied for Robotic Screw Insertion

  • Huh, Jisoon;Hyun, Jae Hwan;Park, Hyeong Geon;Kwak, Ho-Young
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권4호
    • /
    • pp.376-381
    • /
    • 2019
  • Objective : To define optimal method that calculate the safe direction of cervical pedicle screw placement using computed tomography (CT) image based three dimensional (3D) cortical shell model of human cervical spine. Methods : Cortical shell model of cervical spine from C3 to C6 was made after segmentation of in vivo CT image data of 44 volunteers. Three dimensional Cartesian coordinate of all points constituting surface of whole vertebra, bilateral pedicle and posterior wall were acquired. The ideal trajectory of pedicle screw insertion was defined as viewing direction at which the inner area of pedicle become largest when we see through the biconcave tubular pedicle. The ideal trajectory of 352 pedicles (eight pedicles for each of 44 subjects) were calculated using custom made program and were changed from global coordinate to local coordinate according to the three dimensional position of posterior wall of each vertebral body. The transverse and sagittal angle of trajectory were defined as the angle between ideal trajectory line and perpendicular line of posterior wall in the horizontal and sagittal plane. The averages and standard deviations of all measurements were calculated. Results : The average transverse angles were $50.60^{\circ}{\pm}6.22^{\circ}$ at C3, $51.42^{\circ}{\pm}7.44^{\circ}$ at C4, $47.79^{\circ}{\pm}7.61^{\circ}$ at C5, and $41.24^{\circ}{\pm}7.76^{\circ}$ at C6. The transverse angle becomes more steep from C3 to C6. The mean sagittal angles were $9.72^{\circ}{\pm}6.73^{\circ}$ downward at C3, $5.09^{\circ}{\pm}6.39^{\circ}$ downward at C4, $0.08^{\circ}{\pm}6.06^{\circ}$ downward at C5, and $1.67^{\circ}{\pm}6.06^{\circ}$ upward at C6. The sagittal angle changes from caudad to cephalad from C3 to C6. Conclusion : The absolute values of transverse and sagittal angle in our study were not same but the trend of changes were similar to previous studies. Because we know 3D address of all points constituting cortical shell of cervical vertebrae. we can easily reconstruct 3D model and manage it freely using computer program. More creative measurement of morphological characteristics could be carried out than direct inspection of raw bone. Furthermore this concept of measurement could be used for the computing program of automated robotic screw insertion.

IoT 환경에서 센서 데이터 처리율 향상을 위한 Apriori 기반 빅데이터 처리 시스템 (Apriori Based Big Data Processing System for Improve Sensor Data Throughput in IoT Environments)

  • 송진수;김수진;신용태
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권10호
    • /
    • pp.277-284
    • /
    • 2021
  • 최근 스마트 홈 환경은 무선 정보통신 기술과 융합을 통해서 다양한 데이터를 수집·통합·활용하는 플랫폼이 될 것으로 전망되고 있으며 실제로 스마트 홈 내부에는 다양한 센서를 탑재한 스마트 디바이스 수가 점점 증가하고 있다. 증가된 스마트 디바이스 수만큼 처리해야하는 데이터의 양도 증가하고 있으며 이를 효과적으로 처리하기 위해 빅데이터 처리 시스템이 활발하게 도입되고 있다. 그러나 기존 빅데이터 처리 시스템은 분산 노드에 할당되기 전 모든 요청이 클러스터 드라이버로 향하기 때문에 동시에 많은 요청이 발생하는 경우 분할 작업을 관리하는 클러스터 드라이버에 병목현상이 발생하고, 이는 네트워크를 공유하는 클러스터 전체의 성능감소로 이어진다. 특히 작은 데이터 처리를 지속해서 요청하는 스마트 홈 디바이스에서 지연율이 더 크게 나타난다. 이에 본 논문에서는 동시에 다수의 센서에서 요청이 발생하는 스마트 홈 환경에서 효과적인 데이터 처리를 위한 Apriori 기반 빅데이터 시스템을 설계하였다. 제안하는 시스템의 성능평가 결과에 따르면, 데이터 처리 시간은 기존 시스템에 비해 최소 19.2%에서 최대 38.6% 단축됐다. 이러한 결과가 발생한 이유는 측정되는 데이터의 형태와 관련이 있다. 스마트 홈 환경은 수집되는 데이터의 양은 방대하나 각 데이터의 용량은 작기 때문에 캐시 서버의 사용이 데이터 처리에 큰 역할을 하며, Apriori 알고리즘을 통한 연관도 분석으로 사용자의 행동 습관과 연관도가 높은 센서 데이터를 캐시에 저장하기 때문에 캐시 서버의 활용률이 매우 높다.

형태학적 연산과 경계추출 학습이 강화된 U-Net을 활용한 Sentinel-1 영상 기반 수체탐지 (Water Segmentation Based on Morphologic and Edge-enhanced U-Net Using Sentinel-1 SAR Images)

  • 김휘송;김덕진;김준우
    • 대한원격탐사학회지
    • /
    • 제38권5_2호
    • /
    • pp.793-810
    • /
    • 2022
  • 실시간 범람 모니터링을 위해 인공위성 SAR영상을 활용하는 수체탐지에 대한 필요성이 대두되었다. 주야와 기상에 상관없이 주기적으로 촬영 가능한 인공위성 SAR 영상은 육지와 물의 영상학적 특징이 달라 수체탐지에 적합하나, 스페클 노이즈와 영상별 상이한 밝기 값 등의 한계를 내포하여 다양한 시기에 촬영된 영상에 일괄적으로 적용 가능한 수체탐지 알고리즘 개발이 쉽지 않다. 이를 위해 본 연구에서는 Convolutional Neural Networks (CNN)기반 모델인 U-Net 아키텍처에 레이어의 조합인 모듈을 추가하여 별도의 전처리 없이 수체탐지의 정확도 향상 방법을 제시하였다. 풀링 레이어의 조합을 활용하여 형태학적 연산처리 효과를 제공하는 Morphology Module과 전통적인 경계탐지 알고리즘의 가중치를 대입한 컨볼루션 레이어를 사용하여 경계 학습을 강화시키는 Edge-enhanced Module의 다양한 버전을 테스트하여, 최적의 모듈 구성을 도출하였다. 최적의 모듈 버전으로 판단된 min-pooling과 max-pooling이 연속으로 이어진 레이어와 min-pooling로 구성된 Morphology 모듈과 샤를(Scharr) 필터를 적용한 Edge-enhanced 모듈의 산출물을 U-Net 모델의 conv 9에 입력자료로 추가하였을 때, 정량적으로 9.81%의 F1-score 향상을 보여주었으며, 기존의 U-Net 모델이 탐지하지 못한 작은 수체와 경계선을 보다 세밀하게 탐지할 수 있는 성능을 정성적 평가를 통해 확인하였다.

소셜미디어를 이용한 기록관리기관의 기록서비스 혁신 방안 연구: 경남기록원과 서울기록원을 중심으로 (A Study on Innovation Plan of Archives' Recording Service using Social Media: Focused on Gyeongnam Archives and Seoul Metropolitan Archives)

  • 김예지;김익한
    • 한국기록관리학회지
    • /
    • 제22권2호
    • /
    • pp.1-25
    • /
    • 2022
  • 오늘날 대부분의 아카이브가 소셜미디어를 통한 기록서비스를 제공하고 있지만, 효과는 매우 저조하다. 본 연구는 영구기록물관리기관이자 광역지방자치단체 지방기록물관리기관인 경남기록원과 서울기록원을 중심으로 소셜미디어 기록서비스가 미진한 원인을 분석하여 개선방안을 제시하고, 고전적인 기록서비스와 소셜미디어가 상호 성장하여 시너지효과를 일으킬 수 있는 방안의 설계를 목적으로 하였다. 문헌연구를 통해 소셜미디어별 특성과 메커니즘을 파악하였으며, 현황 분석을 통해 경남기록원과 서울기록원의 소셜미디어 운영 실태를 파악하고, 내부 문건을 검토하여 공통적인 문제점을 도출했다. 보다 상세한 분석을 위해 기관 기록서비스 담당자와 인터뷰를 진행했으며, 국내 유관기관과 해외 아카이브의 소셜미디어 운영 사례를 분석하여 아카이브에 적용할 수 있는 방안을 검토했다. 이를 바탕으로 새로운 기록서비스 프로세스를 구축하고, 소셜미디어별 전략적 운영 방안을 제안함과 동시에 기존의 기록서비스와 상호성장 할 수 있는 방안을 설계하였다.

건물 통합 정보를 이용한 지붕 추출 의미론적 분류 (Semantic Segmentation for Roof Extraction using Official Buildings Information)

  • 염성관;이희권;신광성
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.582-583
    • /
    • 2021
  • 태양광, 풍력 등 신재생 에너지 생산이 다양해지면서 생산과 소비를 동시에 할 수 있는 마이크로그리드 시스템이 소개되었지만 국내에서는 아직까지 자동화된 전력거래 기술 도입이 필요하고 생산 및 중계인의 보호할 장치가 필요하다. 일반적으로 여름에는 태양광을 통한 전력 가격 하락이 예상되어 생산자 보호가 필요하다. 본 논문에서는 마이크로그리드 환경에서 블록체인(Blockchain)을 활용한 사용자 간 투명하고 안전한 선물 전력거래 시스템을 제안한다. 선물이란 간단히 말해서 고정된 가격과 미리 정해진 선물 가격에 구매자가 전력을 사는 의무를 가지거나 판매자가 전력을 팔아야 하는 의무를 갖게 되는 계약이다. 본 시스템은 블록체인 네트워크 내에서 신뢰할 수 있는 실행코드인 스마트 컨트랙트(Smart Contract)를 이용하여 사용자의 개입 없이 자동화된 동작으로 선물 가격을 검색하고 전력 거래를 체결하는 선물 거래 알고리즘을 제안한다. 만일 전력 생산자가 생산계획 시에 최대 생산 시기(하지)의 가격이 하락할 가능성이 있다고 생각이 되면 선물시장에서 선물을 먼저 팔아 놓고 최대 생산 시기(하지)에 선물을 되사서 이익을 내어 현물시장에서의 손실을 보전할 수 있다. 또 중계업자는 판매계약 체결 시에 전력 가격이 상승될 우려가 있으면 선물시장에서 먼저 선물을 매입하고 판매계약 이행 시 선물을 청산하여 이익을 실현시켜 현물시장에서의 손실을 보전할 수 있게 된다.

  • PDF

능동모양모델 알고리듬을 위한 삼차원 모델생성 기법 (Three-dimensional Model Generation for Active Shape Model Algorithm)

  • 임성재;정용연;호요성
    • 대한전자공학회논문지SP
    • /
    • 제43권6호
    • /
    • pp.28-35
    • /
    • 2006
  • 통계적 데이터를 이용하여 모양 변이가 가능한 능동모양모델(Active Shape Model, ASM)은 이차원 영상의 분할 및 인식에 성공적으로 사용되고 있다. 삼차원 모델 기반 기법은 객체 경계의 인식 및 묘사(delineating)를 위한 더욱 현실적인 모양 억제력(constraint)을 갖는다는 점에서 이차원 모델 기반 기법에 비해 좋은 결과를 가져온다. 그러나 삼차원 모델 기반 기법을 위해서는 분할된 객체들의 집합인 훈련(training) 데이터로부터 삼차원 모양모델을 생성하는 것이 가장 중요하고 필수적인 단계이며, 현재까지도 커다란 도전 과제로 남아있다. 삼차원 모양모델 생성에서 가장 중요한 단계는 포인트 분산모델(PDM)을 생성하는 것이다. PDM 생성을 위해서는 상응하는 특징점(landmark)을 모든 훈련 데이터의 대응하는 위치에서 선택해야 한다. 그러나 현재까지 많이 사용되는 특징점의 수동 선택 기법은 시간이 많이 소비되며, 많은 오류를 발생한다. 본 논문에서는 삼차원 통계적 모양모델의 생성을 위한 새로운 자동 기법을 제안한다. 주어진 삼차원 훈련 모양 데이터에서, 삼차원 모델은 다음 방법에 의해 생성된다. 1) 훈련 모양 데이터의 거리 변환(distance transform)으로부터 평균(mean) 모양 생성, 2) 평균 모양에서 자동적으로 특징점을 선택하기 위한 사면체(tetrahedron) 기법 사용, 3) 거리 표식(distance labeling) 기법을 통한 각 훈련 모양에서 특징점의 전파(propagating). 본 논문에서는 50명의 복부 CT 영상으로부터 간(liver)을 위한 삼차원 모델을 생성하고, 평가를 위i괘 정확성과 밀집도(compactness)를 조사한다. 기존의 삼차원 모델 생성 기법들은 객체의 모양과 기하학적 및 위상학적으로 심각한 제한을 갖지만, 본 논문에서 제안한 기법은 위와 같은 제한 없이 어느 데이터 집합에도 적용할 수 있다.3mW이며, 시제품 ADC의 칩 면적은 $0.47mm^2$ 이다. 각각 56dB, 65dB이고, 전력 소모는 1.2V 전원 전압에서 각각 4.8mW, 2.4mW이며 제작된 ADC의 칩 면적은 $0.8mm^2$이다.quential scan) 알고리즘과 성능을 비교한다. 실험결과, 제안된 알고리즘은 순차 검색에 비하여 최대 13.2배까지 성능이 향상되었으며, 인덱스의 개수 k가 증가함에 따라 검색 성능도 함께 증가하였다.라서 보다 안전성과 효율성이 뛰어난 2차 대사물질을 찾아내는 연구와 아울러 방제기능이 있는 물질의 생합성경로를 구명하고 대사공학적으로 이용하므로 병해충에 저항성이 있고 잡초 방제효과를 갖는 형질전환 식물을 육성하는 연구가 지속적으로 이루어져야 할 것이다.{\sim}83.8%$ 범위(範圍)를 차지 하였다. 5) 칼슘 섭취량(攝取量)은 권장량 500 mg 에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $282.4{\sim}355.0mg$이었고 여주지역(麗州地域) 아동(兒童)이 $284.6{\sim}429.0mg$ 이었다. 6) 철(鐵) 섭취량(攝取量)은 권장량 10mg에 비(比)하여 양구지역(楊口地域) 아동(兒童)이 $6.0{\sim}12.1mg$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $6.4{\sim}16.7mg$ 범위(範圍)로 상당수의 아동(兒童)이 권장량에 미달(未達) 되었다. 7) 비터민 A 섭취량(攝取量)은 양구지역(楊口地域)이 $703.4{\sim}1495.6\;IU$ 범위(範圍)이었고 여주지역(麗州地域) 아동(兒童)이 $750.5{\sim}1521.2\;IU$ 범위(範圍)로서 ${\beta}-carotene$으로서의 권장량 5100 I.U,에 비(比)하여 매우 부족되었다

GOCI와 Landsat OLI 영상 융합을 통한 적조 탐지 (Red Tide Detection through Image Fusion of GOCI and Landsat OLI)

  • 신지선;김근용;민지은;유주형
    • 대한원격탐사학회지
    • /
    • 제34권2_2호
    • /
    • pp.377-391
    • /
    • 2018
  • 광역범위에 대한 적조의 효율적인 모니터링을 위하여 원격탐사의 필요성이 점차 증가하고 있다. 하지만 기존 연구에서는 다양한 센서 중 해색 센서만을 위한 적조 탐지 알고리즘 개발에만 집중되어 있는 실정이다. 본 연구에서는 위성 기반 적조 모니터링의 한계로 지적되고 있는 탁도가 높은 연안역의 적조 탐지와 원격탐사 자료의 부정확성을 개선하고자 다중센서의 활용을 제시하고자 한다. 국립수산과학원 적조속보 정보를 바탕으로 적조 발생해역을 선정하였고, 해색 센서인 GOCI 영상과 육상 센서인 Landsat OLI 영상을 이용하여 공간적인 융합과 분광기반 융합을 시도하였다. 두 영상의 공간 융합을 통하여, GOCI 영상에서 관측 불가능하였던 연안지역의 적조와 Landsat OLI 영상의 품질이 낮았던 외해역의 적조 모두 개선된 탐지결과 획득 가능하였다. Feature-level과 rawdata-level로 나누어 진행된 분광 융합 결과, 두 방법에서 도출된 적조 분포 양상은 큰 차이를 보이지 않았다. 하지만 feature-level 방법에서는 영상의 공간해상도가 낮을수록 적조 면적이 과대추정되는 경향이 나타났다. Linear spectral unmixing 방법으로 픽셀을 세분화한 결과, 적조 비율이 낮은 픽셀의 수가 많을수록 적조 면적의 차이는 심화되는 것으로 나타났다. Rawdata-level의 경우Gram-Schmidt가 PC spectral sharpening 기법보다 다소 넓은 면적이 추정되었지만, 큰 차이는 나타나지 않았다. 본 연구에서는 해색 센서와 육상 센서의 공간 융합을 통해 외해뿐만 아니라 탁도가 높은 연안의 적조 역시 탐지가 가능함을 보여주었고, 다양한 분광 융합 방법을 제시함으로써 더욱 정확한 적조 면적 추정 방법을 제시하였다. 이 결과는 한반도 주변의 적조를 더욱 정확하게 탐지하고, 적조를 효과적으로 제어하기 위한 대응대책 수립을 결정하는데 필요한 정확한 적조 면적 정보를 제공할 수 있을 것으로 기대된다.