• 제목/요약/키워드: Segmentation Method

검색결과 2,163건 처리시간 0.03초

A Level Set Method to Image Segmentation Based on Local Direction Gradient

  • Peng, Yanjun;Ma, Yingran
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1760-1778
    • /
    • 2018
  • For image segmentation with intensity inhomogeneity, many region-based level set methods have been proposed. Some of them however can't get the relatively ideal segmentation results under the severe intensity inhomogeneity and weak edges, and without use of the image gradient information. To improve that, we propose a new level set method combined with local direction gradient in this paper. Firstly, based on two assumptions on intensity inhomogeneity to images, the relationships between segmentation objects and image gradients to local minimum and maximum around a pixel are presented, from which a new pixel classification method based on weight of Euclidian distance is introduced. Secondly, to implement the model, variational level set method combined with image spatial neighborhood information is used, which enhances the anti-noise capacity of the proposed gradient information based model. Thirdly, a new diffusion process with an edge indicator function is incorporated into the level set function to classify the pixels in homogeneous regions of the same segmentation object, and also to make the proposed method more insensitive to initial contours and stable numerical implementation. To verify our proposed method, different testing images including synthetic images, magnetic resonance imaging (MRI) and real-world images are introduced. The image segmentation results demonstrate that our method can deal with the relatively severe intensity inhomogeneity and obtain the comparatively ideal segmentation results efficiently.

Small Object Segmentation Based on Visual Saliency in Natural Images

  • Manh, Huynh Trung;Lee, Gueesang
    • Journal of Information Processing Systems
    • /
    • 제9권4호
    • /
    • pp.592-601
    • /
    • 2013
  • Object segmentation is a challenging task in image processing and computer vision. In this paper, we present a visual attention based segmentation method to segment small sized interesting objects in natural images. Different from the traditional methods, we first search the region of interest by using our novel saliency-based method, which is mainly based on band-pass filtering, to obtain the appropriate frequency. Secondly, we applied the Gaussian Mixture Model (GMM) to locate the object region. By incorporating the visual attention analysis into object segmentation, our proposed approach is able to narrow the search region for object segmentation, so that the accuracy is increased and the computational complexity is reduced. The experimental results indicate that our proposed approach is efficient for object segmentation in natural images, especially for small objects. Our proposed method significantly outperforms traditional GMM based segmentation.

A Method for Tree Image Segmentation Combined Adaptive Mean Shifting with Image Abstraction

  • Yang, Ting-ting;Zhou, Su-yin;Xu, Ai-jun;Yin, Jian-xin
    • Journal of Information Processing Systems
    • /
    • 제16권6호
    • /
    • pp.1424-1436
    • /
    • 2020
  • Although huge progress has been made in current image segmentation work, there are still no efficient segmentation strategies for tree image which is taken from natural environment and contains complex background. To improve those problems, we propose a method for tree image segmentation combining adaptive mean shifting with image abstraction. Our approach perform better than others because it focuses mainly on the background of image and characteristics of the tree itself. First, we abstract the original tree image using bilateral filtering and image pyramid from multiple perspectives, which can reduce the influence of the background and tree canopy gaps on clustering. Spatial location and gray scale features are obtained by step detection and the insertion rule method, respectively. Bandwidths calculated by spatial location and gray scale features are then used to determine the size of the Gaussian kernel function and in the mean shift clustering. Furthermore, the flood fill method is employed to fill the results of clustering and highlight the region of interest. To prove the effectiveness of tree image abstractions on image clustering, we compared different abstraction levels and achieved the optimal clustering results. For our algorithm, the average segmentation accuracy (SA), over-segmentation rate (OR), and under-segmentation rate (UR) of the crown are 91.21%, 3.54%, and 9.85%, respectively. The average values of the trunk are 92.78%, 8.16%, and 7.93%, respectively. Comparing the results of our method experimentally with other popular tree image segmentation methods, our segmentation method get rid of human interaction and shows higher SA. Meanwhile, this work shows a promising application prospect on visual reconstruction and factors measurement of tree.

Segmentation of Neuronal Axons in Brainbow Images

  • Kim, Tae-Yun;Kang, Mi-Sun;Kim, Myoung-Hee;Choi, Heung-Kook
    • 한국멀티미디어학회논문지
    • /
    • 제15권12호
    • /
    • pp.1417-1429
    • /
    • 2012
  • In neuroscientific research, image segmentation is one of the most important processes. The morphology of axons plays an important role for researchers seeking to understand axonal functions and connectivity. In this study, we evaluated the level set segmentation method for neuronal axons in a Brainbow confocal microscopy image. We first obtained a reconstructed image on an x-z plane. Then, for preprocessing, we also applied two methods: anisotropic diffusion filtering and bilateral filtering. Finally, we performed image segmentation using the level set method with three different approaches. The accuracy of segmentation for each case was evaluated in diverse ways. In our experiment, the combination of bilateral filtering with the level set method provided the best result. Consequently, we confirmed reasonable results with our approach; we believe that our method has great potential if successfully combined with other research findings.

Performance Comparison Between the Envelope Peak Detection Method and the HMM Based Method for Heart Sound Segmentation

  • Jang, Hyun-Baek;Chung, Young-Joo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제28권2E호
    • /
    • pp.72-78
    • /
    • 2009
  • Heart sound segmentation into its components, S1, systole, S2 and diastole is the first step of analysis and the most important part in the automatic diagnosis of heart sounds. Conventionally, the Shannon energy envelope peak detection method has been popularly used due to its superior performance in locating S1 and S2. Recently, the HMM has been shown to be quite suitable in modeling the heart sound signal and its use in segmenting the heart sound signal has been suggested with some success. In this paper, we compared the two methods for heart sound segmentation using a common database. Experimental tests carried out on the 4 different types of heart sound signals showed that the segmentation accuracy relative to the manual segmentation was 97.4% in the HMM based method which was larger than 91.5% in the peak detection method.

표적분할 신뢰도 값 기반의 형태특징과 지역특징을 이용한 차량표적 분류기법 연구 (A Study on Vehicle Target Classification Method Using Both Shape and Local Features with Segmentation Reliability)

  • 양동원;이용헌;곽동민
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.40-47
    • /
    • 2017
  • To classify the vehicle targets automatically using thermal images, there are usually two main categories of feature extraction method, local and shape feature extraction methods. Since thermal images have less texture information than color images, the shape feature extraction method is useful when the segmentation results are correct. However, if there are some errors in target segmentation, the shape feature may contain some errors, then the classification accuracy can be decreased. To overcome these problems, in this paper, we propose the segmentation reliability estimation method for target classification. The segmentation reliability can be estimated by using the difference information of average intensities and edge energies between the target and the background area. The estimated segmentation reliability is applied in the decision level fusion method of classification results using both shape and local features. Experiment results using the thermal images of the vehicle targets (main battle tank, armored personnel carrier, military truck, and an estate car) show that the proposed classification method and the segmentation reliability estimation method have a good performance in classification accuracy.

Inversion of Spread-Direction and Alternate Neighborhood System for Cellular Automata-Based Image Segmentation Framework

  • Lee, Kyungjae;Lee, Junhyeop;Hwang, Sangwon;Lee, Sangyoun
    • Journal of International Society for Simulation Surgery
    • /
    • 제4권1호
    • /
    • pp.21-23
    • /
    • 2017
  • Purpose In this paper, we proposed alternate neighborhood system and reverse spread-direction approach for accurate and fast cellular automata-based image segmentation method. Materials and Methods On the basis of a simple but effective interactive image segmentation technique based on a cellular automaton, we propose an efficient algorithm by using Moore and designed neighborhood system alternately and reversing the direction of the reference pixels for spreading out to the surrounding pixels. Results In our experiments, the GrabCut database were used for evaluation. According to our experimental results, the proposed method allows cellular automata-based image segmentation method to faster while maintaining the segmentation quality. Conclusion Our results proved that proposed method improved accuracy and reduced computation time, and also could be applied to a large range of applications.

다중스케일 노멀라이즈 컷을 이용한 영상분할 (Image Segmentation using Multi-scale Normalized Cut)

  • 이재현;이지은;박래홍
    • 방송공학회논문지
    • /
    • 제18권4호
    • /
    • pp.609-618
    • /
    • 2013
  • 본 논문은 기존 그래프 컷 기반 영상분할의 성능은 유지하면서 연산속도가 빠른 영상분할 방법을 제안한다. 기존 그래프 컷 기반 영상분할은 높은 성능을 보이지만 고유쌍 연산으로 인해 분할 속도가 느리다는 단점을 지닌다. 이는 고유쌍 연산에서 영상 내 모든 화소 사이의 유사도를 고려하여 정방행렬을 만들기 때문이다. 그러므로 제안하는 방법은 영상을 여러 영역으로 분할하여 작은 크기의 정방행렬을 구성하고 이를 통해 고유쌍 연산 속도를 크게 향상시킨다. 본 논문에서는 대수적 다중 격자를 이용한 다중스케일 영상분할법을 제안하고 실험 결과를 통해 제안하는 방법이 기존 영상분할 방법보다 그 성능이 더 우수함을 보인다.

마이크로 CT 영상에서 자동 분할을 이용한 해면뼈의 형태학적 분석 (Structural analysis of trabecular bone using Automatic Segmentation in micro-CT images)

  • 강선경;정성태
    • 한국멀티미디어학회논문지
    • /
    • 제17권3호
    • /
    • pp.342-352
    • /
    • 2014
  • 본 논문에서는 마이크로 CT 영상에서 치밀뼈와 해면뼈의 자동 분할 방법을 제안하고 분할된 해면뼈의 형태학적 분석 방법의 구현에 대해 기술한다. 제안된 분할 방법에서는 임계값을 이용하여 뼈 영역을 추출한다. 그 다음에는, 뼈의 바깥 경계선부터 안쪽 방향으로 인접한 경계선을 찾아 치밀뼈 후보 영역을 설정한다. 치밀뼈 후보 영역들 중에서 평균 픽셀값이 최대가 되는 지점을 후보 영역을 탐색하여 치밀뼈를 제거한다. 분할된 해면뼈에 BV/TV, Tb.Th, Tb.Sp, Tb.N의 네 가지 형태학적 지표자들을 계산하는 방법을 VTK(Visualization ToolKit)와 구 정합 알고리즘을 이용하여 구현하였다. 구현된 방법을 쥐의 20개 대퇴골 근위부 영상에 적용하였으며 사람이 수작업으로 분할하는 방법과 비교 실험을 수행하였다. 실험 결과 네 가지 형태학적 지표자 모두 수작업으로 분할한 경우와 자동으로 분할한 경우 3% 이내의 평균 오차율을 보여 제안된 방법은 번거로운 수작업 분할 대신 사용될 수 있음을 알 수 있었다.