• Title/Summary/Keyword: Segmental lining design

Search Result 12, Processing Time 0.021 seconds

Study on improving method of arranging trapezoidal pre-cast segment lining in shield tunnel (쉴드터널의 사다리꼴 세그먼트라이닝 배열방법 개선에 대한 연구)

  • Kim, Jung-Hyun;Kang, Kyung-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.1-18
    • /
    • 2007
  • This study is about an arrangement method of trapezoidal pre-cast segment lining that can be applied in shield tunnel construction. Trapezoidal segment lining is formed by assembling tapered pre-cast concrete segments taking advantage of the tapered shape of pre-cast segments upon delivery on site. By calculating tapering of the segments manufactured in single type and rotating the segments when putting them together, a variety of tunnel alignments can be arranged in the most efficient way. Once the design criteria and tunnel alignment (straight or curved) is analyzed, the sequence of assembling trapezoidal segments in compliance with tunnel alignment will be computed. On site an operator can utilize the softwareto automatically determine sequential arrangement of trapezoidal segments. When the actual arrangement of segmental lining is different from the computed output, the operator can input the actually measured values to coincide the computerized calculation with the real status of assembly. Then the adjustment will be the basis of subsequent arrangement of segments, thus the continuity of work can be guaranteed.

  • PDF

Numerical analysis of segmental tunnel linings - Use of the beam-spring and solid-interface methods

  • Rashiddel, Alireza;Hajihassani, Mohsen;Kharghani, Mehdi;Valizadeh, Hadi;Rahmannejad, Reza;Dias, Daniel
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.471-486
    • /
    • 2022
  • The effect of segmental joints is one of main importance for the segmental lining design when tunnels are excavated by a mechanized process. In this paper, segmental tunnel linings are analyzed by two numerical methods, namely the Beam-Spring Method (BSM) and the Solid-Interface Method (SIM). For this purpose, the Tehran Subway Line 6 Tunnel is considered to be the reference case. Comprehensive 2D numerical simulations are performed considering the soil's calibrated plastic hardening model (PH). Also, an advanced 3D numerical model was used to obtain the stress relaxation value. The SIM numerical model is conducted to calculate the average rotational stiffness of the longitudinal joints considering the joints bending moment distribution and joints openings. Then, based on the BSM, a sensitivity analysis was performed to investigate the influence of the ground rigidity, depth to diameter ratios, slippage between the segment and ground, segment thickness, number of segments and pattern of joints. The findings indicate that when the longitudinal joints are flexible, the soil-segment interaction effect is significant. The joint rotational stiffness effect becomes remarkable with increasing the segment thickness, segment number, and tunnel depth. The pattern of longitudinal joints, in addition to the joint stiffness ratio and number of segments, also depends on the placement of longitudinal joints of the key segment in the tunnel crown (similar to patterns B and B').