• Title/Summary/Keyword: SegFormer

Search Result 4, Processing Time 0.022 seconds

The Comparison of Segmentation Performance between SegFormer and U-Net on Railway Components (SegFormer 및 U-Net의 철도 구성요소 객체 분할 성능 비교)

  • Jaehyun Lee;Changjoon Park;Namjung Kim;Junhwi Park;Jeonghwan Gwak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.347-348
    • /
    • 2024
  • 본 논문에서는 철도 구성요소 모니터링을 위한 효율적인 객체 분할 기법으로 사전학습된 SegFormer 모델의 적용을 제안하고, 객체 분할을 위해 보편적으로 사용되는 U-Net 모델과의 성능 비교 분석을 진행하였다. 철도의 주요 구성요소인 선로, 침목, 고정 장치, 배경을 분할할 수 있도록 라벨링된 데이터셋을 학습에 사용하였다. SegFormer 모델이 대조군인 U-Net보다 성능이 Jaccard Score 기준 5.29% 향상됨에 따라 Vision Transformer 기반의 모델이 기존 CNN 기반 모델의 이미지의 전역적인 문맥을 파악하기 상대적으로 어렵다는 한계를 극복하고, 철도 구성요소 객체 분할에 더욱 효율적인 모델임을 확인한다.

  • PDF

Automatic crack detection of dam concrete structures based on deep learning

  • Zongjie Lv;Jinzhang Tian;Yantao Zhu;Yangtao Li
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.615-623
    • /
    • 2023
  • Crack detection is an essential method to ensure the safety of dam concrete structures. Low-quality crack images of dam concrete structures limit the application of neural network methods in crack detection. This research proposes a modified attentional mechanism model to reduce the disturbance caused by uneven light, shadow, and water spots in crack images. Also, the focal loss function solves the small ratio of crack information. The dataset collects from the network, laboratory and actual inspection dataset of dam concrete structures. This research proposes a novel method for crack detection of dam concrete structures based on the U-Net neural network, namely AF-UNet. A mutual comparison of OTSU, Canny, region growing, DeepLab V3+, SegFormer, U-Net, and AF-UNet (proposed) verified the detection accuracy. A binocular camera detects cracks in the experimental scene. The smallest measurement width of the system is 0.27 mm. The potential goal is to achieve real-time detection and localization of cracks in dam concrete structures.

Segmentation Foundation Model-based Automated Yard Management Algorithm (의미론적 분할 기반 모델을 이용한 조선소 사외 적치장 객체 자동 관리 기술)

  • Mingyu Jeong;Jeonghyun Noh;Janghyun Kim;Seongheon Ha;Taeseon Kang;Byounghak Lee;Kiryong Kang;Junhyeon Kim;Jinsun Park
    • Smart Media Journal
    • /
    • v.13 no.2
    • /
    • pp.52-61
    • /
    • 2024
  • In the shipyard, aerial images are acquired at regular intervals using Unmanned Aerial Vehicles (UAVs) for the management of external storage yards. These images are then investigated by humans to manage the status of the storage yards. This method requires a significant amount of time and manpower especially for large areas. In this paper, we propose an automated management technology based on a semantic segmentation foundation model to address these challenges and accurately assess the status of external storage yards. In addition, as there is insufficient publicly available dataset for external storage yards, we collected a small-scale dataset for external storage yards objects and equipment. Using this dataset, we fine-tune an object detector and extract initial object candidates. They are utilized as prompts for the Segment Anything Model(SAM) to obtain precise semantic segmentation results. Furthermore, to facilitate continuous storage yards dataset collection, we propose a training data generation pipeline using SAM. Our proposed method has achieved 4.00%p higher performance compared to those of previous semantic segmentation methods on average. Specifically, our method has achieved 5.08% higher performance than that of SegFormer.

Bird's Eye View Semantic Segmentation based on Improved Transformer for Automatic Annotation

  • Tianjiao Liang;Weiguo Pan;Hong Bao;Xinyue Fan;Han Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.8
    • /
    • pp.1996-2015
    • /
    • 2023
  • High-definition (HD) maps can provide precise road information that enables an autonomous driving system to effectively navigate a vehicle. Recent research has focused on leveraging semantic segmentation to achieve automatic annotation of HD maps. However, the existing methods suffer from low recognition accuracy in automatic driving scenarios, leading to inefficient annotation processes. In this paper, we propose a novel semantic segmentation method for automatic HD map annotation. Our approach introduces a new encoder, known as the convolutional transformer hybrid encoder, to enhance the model's feature extraction capabilities. Additionally, we propose a multi-level fusion module that enables the model to aggregate different levels of detail and semantic information. Furthermore, we present a novel decoupled boundary joint decoder to improve the model's ability to handle the boundary between categories. To evaluate our method, we conducted experiments using the Bird's Eye View point cloud images dataset and Cityscapes dataset. Comparative analysis against stateof-the-art methods demonstrates that our model achieves the highest performance. Specifically, our model achieves an mIoU of 56.26%, surpassing the results of SegFormer with an mIoU of 1.47%. This innovative promises to significantly enhance the efficiency of HD map automatic annotation.