• Title/Summary/Keyword: Seepage quantity

Search Result 33, Processing Time 0.043 seconds

A Study of the Seepage through Sand-Constructed Model Dams. (모래로 축조된 댐 모형의 침투에 관한 연구(I))

  • 신방웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.2
    • /
    • pp.64-82
    • /
    • 1980
  • The aim of this thesis, when water permeates dam, is to study the shape of seepage line and seepage quantity. As for the process, various sand model dams of same capacity were constructed in the water tank : they are a central, middle, inclined, up and down stream point of which is paralled, and filter-installed types. And the slope of seepage line and seepage quantity in these various models for experiment were measured, observed data were analyzed, and several formulas which already published were compared and examined. As for the shape of seepage line, the relation between upstream water level and exit: slope of seepage line, near the entrance and exit point, geometrically similar model, and the shape of seepage line filter-installed were examined. As regards to the seepage quantity, several formulas which already published and testing result values were compared and examined, and relation with the slope of seepage line, the seepage quantity, the slope of upstream point, and the upstream water level were mutually studied. Particulary, when horizontal filter was installed, propriety of the existing formulas for effective filter length w as examined, and the relative position of exit point in various. conditions was also studied.

  • PDF

The Analysis of the Seepage Quantity of Reservoir Embankment using Stochastic Response Surface Method (확률론적 응답면 기법을 이용한 저수지 제체의 침투수량 해석)

  • Bong, Tae-Ho;Son, Young-Hwan;Noh, Soo-Kack;Choi, Woo-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.75-84
    • /
    • 2013
  • The seepage quantity analysis of reservoir embankment is very important for assessment of embankment safety. However, the conventional analysis does not consider uncertainty of soil properties. Permeability is known that the coefficient of variation is larger than other soil properties and seepage quantity is highly dependent on the permeability of embankment. Therefore, probabilistic analysis should be carried out for seepage analysis. To designers, however, the probabilistic analysis is not an easy task. In this paper, the method that can be performed probabilistic analysis easily and efficiently through the numerical analysis based commercial program is proposed. Stochastic response surface method is used for approximate the limit state function and when estimating the coefficients, the moving least squares method is applied in order to reduce local error. The probabilistic analysis is performed by LHC-MCS through the response surface. This method was applied to two type (homogeneous, core zone) earth dams and permeability of embankment body and core are considered as random variables. As a result, seepage quantity was predicted effectively by response surface and probabilistic analysis could be successfully implemented.

Assessment for Amount Increment of Dredged Soil using infiltrated consolidation method (침투압밀공법을 이용한 준설투기용량 산정)

  • Kwak, No-Kyung;Lee, Mu-Cheol;Lee, Song
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1198-1209
    • /
    • 2009
  • In this study, an experimental research on the acceleration effect of dredged soil's self weight consolidation with seepage consolidation and PBD was conducted. The middle-sized consolidation equipment had been manufactured in order to investigate the acceleration of sedimentation and self-weight consolidation by PBD and a lower drainage. Seepage pressure was applied to the PBD installed in the center of the test equipment and a drainage by seepage pressure was allowed. The comparison between cases with and without PBD and seepage pressure reveals that the quantity of drained water and the amount of settlement was nearly 1.2 times to 3.68 times greater in the case with PBD and seepage. Early consolidation completion and the use of reclaimed site are expected due to the acceleration of settlement and increase of the quantity of reclamation if PBD is installed while being reclaiming using the result of the research.

  • PDF

Seepage Quantity Evaluation of a Fill Dam using 3D FEM Analysis (3차원 수치해석에 의한 필 댐의 누수량 평가)

  • Choi, Byoungil
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.45-49
    • /
    • 2015
  • Using 2D numerical analysis that covers the largest section of the dam body, a process is generally performed when evaluating its stability against seepage. The quantity of seepage is first obtained by assuming that its bottom topography is in the simple form of a rectangle, it is then calculated by reflecting its sectional shape during this process of analyzing the seepage quantity. Considering that various forms of dams are being constructed on various types of ground, thanks to more recent technological advances, it is judged more appropriate to draw a conclusion by means of the results on reflecting the realistic shape and topographical conditions of the dam body through 3D numerical analysis. Therefore, this study intends to present a method designed to carry out safety management by evaluating the correct quantity of water leakage that passes only through the dam body, having excluded other factors that include the amount of rainfall through the 3D FEM analysis.

Seepage Characteristics of Agricultural Reservoir Embankment Considering Filter Interval (필터간격을 고려한 농업용저수지 제체의 침투특성)

  • Lee, Young Hak;Lee, Dal Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • This study analyzed pore water pressure, seepage and leakage quantity, height of seepage and critical hydraulic gradient in order to suggest the seepage characteristics of agricultural reservoir embankment considering filter interval. The seepage characteristics of a deteriorated reservoir embankments were conducted according to the horizontal filter intervals range using three- dimensional finite element analysis. The wider the horizontal filter interval, the higher the pore water pressure increased, and the pore water pressure ratio in the center of the core has a greater effect than the base part. The seepage and leakage quantity appeared largely in the two-dimensional analysis conditions (case 1), where the filter was constructed totally in the longitudinal direction of the embankment, the wider the horizontal filter interval was gradually reduced. The reasonable filter intervals to yield efficient seepage characteristics were within 30 m for the pore water pressure of the core and the height of the seepage line. The stability of the filter installation was able to evaluate the stability of the piping by the critical hydraulic gradient method. The deteriorated reservoir with no filters or decreased functionality can significantly reduce the possibility of piping by simply installing a filter on the downstream slope. In the future, the deteriorated reservoir embankment should be checked for the reservoir remodeling because the core and filter functions have been lost or decreased significantly. In the case of a new installation, the seepage characteristic behavior due to the core and filter changes should be applied to the field after obtaining a reasonable horizontal filter interval that satisfies the safety factor by a three-dimensional analysis.

Evaluation of the Performance of One-way Drainage Filter by Field Test (시험시공을 통한 일방향 배수필터의 성능 평가)

  • Seo, Dong-Uk;Kim, Hyeon-Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.4
    • /
    • pp.47-53
    • /
    • 2012
  • It is needed to install a one-way drainage filter to prevent a seepage from lake or river outside of embankment and to promote a drainage from a flood inside of embankment when dikes such as lake dike, river dike, etc are constructed. However, the results of research for one-way drainage filter are insufficient. Therefore, through the field test of one-way drainage filter, this study checked a function of one-way drainage filter with a test of performance. As a result of field test, water flow in dike was blocked in the interception direction of the section that one-way drainage filter was installed, but water passed to the flow allowance direction of the section. Therefore we confirmed the function of one-way drainage filter. Seepage quantity in the flow allowance direction of the one-way drainage filter section was low as 74.6~80.5 % than that in the section without installation of filter because of a reduction effect of seepage with filter. And seepage quantity of field test was low as 64.3~90.0 % than that in results of seepage analysis because the coefficient of permeability of embankment in field is different from the results of laboratory test. In the future, more study will be needed to solve several problems which are related to fix the filter on slide, durability of filter, etc.

An Experimental Study on the Seapage Action of the Inclined Core Wall (경사심벽에 관한 실험적 연구)

  • 신방웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.4
    • /
    • pp.3585-3593
    • /
    • 1974
  • This thesis a result of theoretical and experimental studies on the shape of seepage line and seepage quantities in various inclined core walls. The value of this determination was examined and compared with the values of calculation acquaired to be based on Fukutas, Jin's and author's approximate equation of the theory. Thus the writer of this paper confirms that the seepage quantity can be decreased by changing the types of the inclined core wall and it's change of the slope.

  • PDF

The safety behavior of agricultural reservoirs due to raising the embankment

  • Lee, Dalwon;Lee, Younghak
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.243-252
    • /
    • 2013
  • This study was carried out to investigate safety evaluation of agricultural reservoirs due to raising the embankment. The seepage analysis and large-scale model test were performed to compare and analyze the pore water pressure(PWP), leakage quantity, settlement and piping phenomenon in the inclined core type and the vertical core type embankments. The PWP after raising the embankment showed smaller than before raising the embankment and the stability for piping after raising the embankment. The allowable seepage quantity and the allowable leakage for the steady state and transient conditions is within the range of safe management standard. After raising the embankment in the inclined core, there was no infiltration by leakage. For the vertical core, the PWP showed a large change by faster infiltration of pore water than in the inclined core. In a rapid drawdown, inclined core was remained stable but the vertical core showed a large change in PWP. Settlement after raising the embankment showed larger amounts of settlement than before raising the embankment. The leakage quantity before raising the embankment and the inclined core type showed no leakage. From the result, an instrument system that can accurately estimate a change of PWP shall be established for the rational maintenance and stabilization of raising the embankment for agricultural reservoirs.

Seepage analysis of agricultural reservoir due to raising embankment (농업용 저수지 둑 높이기에 따른 제체의 침투류 해석)

  • Lee, Dal-Won;Lee, Kwang-Sol;Lee, Young-Hak
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.493-504
    • /
    • 2011
  • This study was carried out to safety evaluation, the practical application and improvement of design method of the agricultural reservoir due to raising embankments. Also, it was to compare and analyze the pore water pressure (PWP), seepage (leakage) quantity and piping phenomenon according to high water table and rapid drawdown. The seepage analysis by finite element analysis was used for steady state and transient condition. The pore water pressure distribution for steady state and transient condition showed positive(+) PWP on the upstream slope, it was gradually changed negative(-) PWP on the downstream slope. The PWP in the core ranged from 100 ~ -33 kPa, the seepage line in the incline-type core suddenly decreased towards the lower levels from the higher levels. The PWP according to rapid drawdown is remained in the vicinity of the upstream slope, therefore, it is investigated to be in an unstable state by the slope stability analysis. The PWP after raising embankments showed smaller than in the before raising embankments. It was likely to be the piping phenomenon because the gradients in the before raising embankments showed largely at downstream slope, and the stability for piping in the after raising embankments increased stable state. The seepage quantity per 1 day and the leakage per 100m for the steady state and transient condition appeared to be safe against the piping. It reduced slightly regardless of the transient condition before the raising embankments and it decreased largely about 2.4 times in the early days after the raising embankments.

A Study on Long-Term Seepage Behaviour of Fill Dam by the Monitoring Data Analysis (계측자료 분석에 의한 필댐의 장기 침투거동 연구)

  • Chung, Kyujung;Lee, Song
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.9
    • /
    • pp.15-25
    • /
    • 2010
  • The main objective of this study was to offer informations about long-term seepage behavioral characteristics and to find a leakage safety management method for Juam Dam and Imha Dam, a central cored rockfill dams in Korea by the evaluating the automatically monitored leakage data. In the water leakage monitoring of fill dam, the generation of abnormal water leakage is difficult to directly detect due to the effect of outside factors such as the component of rainfall inherent in the observation value. Therefore, conventionally estimation methods of water leakage quantity were applied by multiple regression analysis considering reservoir water level, rainfall, etc.. However, the estimated error of rainfall component is relatively big in these method. This paper identifies the seepage characteristic of each dams which is not directly affected by rainfall through the hydrograph separation analysis and 3 dimensional analytical method, and thinks a leakage management method. It was noticed that two dams had site specific seepage behaviour features and were in stable state with the decreasing leakage quantity. It was also found that hydrograph separation method might be applicable to leakage safety management method.