• Title/Summary/Keyword: Seepage force

Search Result 56, Processing Time 0.026 seconds

Comparison Study on the Residual Excess Pore Water Pressure Observed in seabed (해저지반에서 계측된 잔류과잉간극수압에 대한 비교 연구)

  • Yang, Soonbo
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.173-179
    • /
    • 2013
  • The interaction among wave, seabed and marine structure is an important issue in coastal engineering as well as geotechnical engineering. Understanding variations of stresses and pore water pressures generated in seabed induced by waves is important for civil engineers who have to design the foundation for various marine structures and verify the instability of seabed. In the matters on seabed instability, particularly, in the case of wave-induced liquefaction of seabed, it is turned out there are two different mechanisms through previous studies. These are caused by the transient or oscillatory nature and the residual or progressive nature of excess pore water pressure generated in seabed, respectively. In this study, it is analyzed dynamic characteristics of soils sampled in seabed around the port of Kochi, Japan, through the dynamic triaxial tests and the residual excess pore water pressure in the seabed induced by seepage force of wave. In addition, the calculated residual excess pore water pressures were compared with the field data observed in the port of Kochi.

Design for Installation of Suction Piles in Sand Deposits for Mooring of Floating Offshore Structures (부유식 해상구조물의 계류를 위한 사질토 지반의 석션파일 설계)

  • Park, Chul-Soo;Lee, Ju-Hyung;Baek, Du-Hyun;Do, Jin-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.33-44
    • /
    • 2014
  • The preliminary design of suction pile as the supporting system for concrete floating structures was performed for the pilot project of the southwest coast area in Korea. Prior to starting design work, site conditions of the area including ground and hydraulic conditions, and a 100-year return period external force were throughly evaluated. The suction pile for mooring of the offshore floating structures has to satisfy the lateral resistance against external force as well as the penetration ability according to the soil conditions such as soil types, shear strengths, effective stresses, and seepage forces. In the design, the required penetration depths, which were stable for lateral resistance, were evaluated with the diameters of cylindrical suction pile as the final installing ones. And the design suction pressures at each penetrating depths, at which sand boiling did not occur, were assessed through the comparison of penetration and penetrationresistance forces. As a result, it was impossible for suction piles with the diameter range of 3.0~5.0 m to penetrate into required penetration depths. On the other hand, suction piles with the diameter range of 6.0 m and 7.0 m satisfied both the horizontal stability and the penetration ability by design suction pressures at the required penetration depths of 8.5 m and 8.0 m, respectively.

Collapse mechanism of tunnel roof considering joined influences of nonlinearity and non-associated flow rule

  • Yang, X.L.;Xu, J.S.;Li, Y.X.;Yan, R.M.
    • Geomechanics and Engineering
    • /
    • v.10 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • Employing non-associated flow rule and Power-Law failure criterion, the failure mechanisms of tunnel roof in homogeneous and layered soils are studied in present analysis. From the viewpoint of energy, limit analysis upper bound theorem and variation principle are introduced to study the influence of dilatancy on the collapse mechanism of rectangular tunnel considering effects of supporting force and seepage force. Through calculation, the collapsing curve expressions of rectangular tunnel which are excavated in homogeneous soil and layered soils respectively are derived. The accuracy of this work is verified by comparing with the existing research results. The collapsing surface shapes with different dilatancy coefficients are draw out and the influence of dilatancy coefficient on possible collapsing range is analyzed. The results show that, in homogeneous soil, the potential collapsing range decreases with the decrease of the dilatancy coefficient. In layered soils, the total height and the width on the layered position of possible collapsing block increase and the width of the falling block on tunnel roof decrease when only the upper soil's dilatancy coefficient decrease. When only the lower soil's dilatancy coefficient decrease or both layers' dilatancy coefficients decrease, the range of the potential collapsing block reduces.

The Aging Effect of Dredging Clayey Soil on the Consolidation Characteristics (준설점성토의 압밀특성에 미치는 시간효과)

  • 김형주
    • Geotechnical Engineering
    • /
    • v.10 no.1
    • /
    • pp.71-82
    • /
    • 1994
  • According to the field measurement of dredging-reclaimed land, the actual self-weight consolidation settlement has been frequently reported to be less than the predicted values based on the laboratory tests results. The author estimates that one of the reasons is the reduction of the compressibility due to the sedimentation of the dredging material, Furthemore, the aging effect is ignored in the consolidation characteristics of the very low stress range as a pump dredging-reclaimed land. In this paper, a series of seepage consotidation tests has been carried out by applying the seepage force to the specimen prepared by sedimentation in consolidmeter in order to clarflfy the aging-effect on the compressibility of dredging clayey soil, Also, with a view to overcome unstable consolidation solution occurring in the case where the initial water content is higher as pumpdredging reclaimed land, the finite difference analysis technique using predictorforrector method is suggested that it gets good agreement with ezperimental results. Finally, the compressibility of the dredging clayey soil is depended on self-weight consolidation time.

  • PDF

Seismic Design of Anchored Sheet Pile Walls in c-0 Soils (점성토 지반에 설치되는 앵커로 지지된 널말뚝의 내진설계)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.8 no.1
    • /
    • pp.41-58
    • /
    • 1992
  • In the present study, an analytical solution method is proposed for the seismic design of anchored sheet pile walls used in port. The proposed analytical method deals with the anchored sheet pile walls with free earth support in sands and c- U soils, including the effects of hydrodynamic pressures and a condition of steady seepage between the two water levels. Also, the effects of various parameters(differential in water levels, anchor position, wall friction angle, dredge line slope, cohesion, adhesion etc.) on embedment depth, anchor force, and maximum bending moment are analyzed using the proposed method. In addition, comparisons between different definitions of safety factor are made, and necessary considerations required in the design of anchored sheet pile walls are examined.

  • PDF

Stability analyses of railroad cut-off soil slopes considering rainfall infiltration (강우에 의한 침투를 고려한 철도 절개 토사 사면의 안정해석)

  • Lee, Su-Hyung;Hwang, Seon-Keun;Kim, Hyun-Ki;SaGong, Myung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.811-818
    • /
    • 2005
  • Stability analyses on the 17 railroad cut-off soil slopes were carried out. The influences of rainfall infiltration on the slope stabilities were taken into account by seepage analyses using finite element method and by assuming ground water tables to be located adjacent to soil surface. The validity of those analyses were evaluated by comparing the slope failure characteristics between analysis results and the past failure records. The analyses were not appropriate to estimate the failure surface and the method considering only the increase of pore-water pressure (reduction of matric suction) as the influence of rainfall cannot appropriately estimate the surficial failures that occurred most of the cut-off soil slopes. For the better estimation of the surficial failure, the influence of water flows over slope surface which erode soil mass and/or increase driving force, should be evaluated and considered.

  • PDF

CASE STUDY ON SEVERELY-DAMAGED REINFORCED EARTH WALL WITH GEO-TEXTILE IN HYOGO, JAPAN Part II: Numerical simulation into causes and countermeasures

  • Hur, Jin-Suk;Kawajiri, Shunzo;Jung, Min-Su;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.11-17
    • /
    • 2010
  • Numerical analysis was carried out in order to simulate the development of the large deformation that took place on the reinforced earth wall, a part of the Tottori expressway planned to pass Hyogo, Japan. Since this reinforced earth wall had experienced unexpected deformation of the wall during construction, the wall was re-constructed twice. However, the wall deformation showed no sign to cease even at the final stage of the construction. Countermeasures to re-stabilize the wall were demanded. In part I of this paper, it was manifested that subsidence of a 3-meter weak soil due to seepage flow was responsible for the large deformation. A part of concrete panel wall was severely damaged due to extremely large pulling force of geotextile induced by the hammock state. As for the countermeasures, "grouting with slag system" was applied to fill voids of the backfill, and also to prevent further development of settlement in the weak soil layer. "Ground anchor" was also considered to achieve the prescribed factor of safety.

  • PDF

CASE STUDY ON SEVERELY-DAMAGED REINFORCED EARTH WALL WITH GEO-TEXTILE IN HYOGO, JAPAN Part I: Site Investigation into the cause of damage

  • Jung, Min-Su;Kawajiri, Shunzo;Hur, Jin-Suk;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.3-10
    • /
    • 2010
  • Case study was carried out on the interpretation of the mechanical behavior of a severely damaged reinforced earth wall comprising geotextile with the concrete panel facing. In this part I, the outline of the damaged reinforced earth wall is in detail described. The background and cause of the damage are discussed based on the results of site investigation. The engineering properties of the fill were examined by performing various in-situ and laboratory tests, including the surface wave survey (SWS), PS-logging, RI-logging, soaking test, the direct shear box (DSB) test, bender element (BE) test, etc. The background as well as the cause for the damage of the wall may be described such that i) a considerable amount of settlement took place over a 3m thick weak soil layer in the lower part of the reinforced earth due to seepage of rainfall water, ii) the weight of the upper fill was partially supported by the geo-textile hooked on the concrete panels (n.b., named conveniently "hammock state" in this paper), and iii) the concrete panels to form the hammock were severely damaged by the unexpectedly large downwards compression force triggered by the tension force of the geotextile. The numerical simulation for the hammock state of the wall, together with counter-measures to re- stabilize the wall is subsequently described in Part II.

  • PDF

Analysis of Hydraulic Effect by River Dredging in a Meandering Channel (하도준설이 사행하천에 미치는 수리학적 영향 분석)

  • KIM, Tae-Hyeong;KIM, Byung-Hyun;HAN, Kun-Yeun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.14-30
    • /
    • 2015
  • This paper attempted to analyze the hydraulic effects that the dredging can take as an alternative to reduce possible damages of flooding due to the overflow of river levee in meandering rivers, where riverbed aggradation, seepage and erosion may occur. In order to make a hydraulic analysis in a section of meandering rivers, a two-dimensional hydraulic analysis model, RMA-2, was selected. The GIS was applied to construct two-dimensional finite element grids to consider the hydraulic conditions before and after dredging. The water surface elevations, depths, velocities, and tractive forces were compared before and after the dredging. The difference of water surface elevation between the inside and outside of river was turned out to be the maximum value of 0.58m under the design flood condition. It could be evaluated that the tractive force at the bank decreased about 42 to 67% on average for all the sections. These results could give valuable information that the dredging of the stream channel at the meandering sections decreased the risk of overflow, seepage and erosion of the banks. The methodologies given in this study will contribute to mitigating the flood damages in the surrounding farmlands.

Seismic Design of Sheet Pile Walls Used in Harbor Construction (항만공사에 이용되는 널말뚝의 내진설계)

  • Kim, Hong Taek;Bang, Yoon Kyung;Kang, In Gyu;Cho, Won Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.171-187
    • /
    • 1991
  • In the present study, an analytical solution method is proposed for the seismic design of cantilever sheet pile walls and anchored sheet pile walls used in harbor construction. Seepage pressures, together with a change in magnitudes of effective horizontal soil pressures, are included in the proposed solution method. Also, the Mononobe-Okabe analysis as well as the Westergaard and Matsuo-Ohara theory of hydrodynamic pressures is used in the proposed method. Further, the choice of values for safety factors is examined for the seismic design of anchored sheet pile walls, and the effects of various parameters(dredge line slope, differential in water levels, anchor position, and wall friction angle) on embedment depth, anchor force, and maximum bending moment are analyzed for anchored walls in dense sand deposits. In addition. the tables that could be used for preliminary seismic design of anchored walls in dense sands are presented. The proposed method deals with the sheet pile walls with free earth support.

  • PDF