• Title/Summary/Keyword: Seed physical dormancy

Search Result 11, Processing Time 0.034 seconds

Physical Dormancy in Seeds of Chinese Milk Vetch (Astragalus sinicus L.) from Korea

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Hwang, Woon-Ha;Kim, Sang-Min;Choi, Kyung-Jin;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.4
    • /
    • pp.421-426
    • /
    • 2008
  • Freshly harvested seed of Chinese milk vetch (Astragalus sinicus L.; CMV) was strongly dormant because of hardseedness. Seeds of freshly harvested germinated only 8% while clipping the seed coat completely overcome the innate dormancy, which indicates inhibition of germination of the seed is mainly due to seed coat (87%). The dormant (intact) hard seeds did not imbibe water whereas the non-dormant (clipped) seeds took up rapidly. In natural environment condition, the hard seed coat dormancy was broken only after 5 months after seed harvest. To break such a strong seed coat dormancy, the chemical and heat treatments were effective. Concentrated sulfuric acid was more effective than dry heat and hot water treatments. Hot water treatment improved germination but the germination percentage was less than 41%. Treatments increased germination due to its effect on the seed coat integrity. A scanning electron microscope reveled that disruption of seed coat layers and subsequent development of numerous crack in the hilum region of the seed and on the seed coat surface of concentrated sulfuric acid treatment and formation of cracks in the dry heat treatments, respectively, were observed in the seed coat surface, which served as water entry points.

Morphological Characteristics of Endocarp in Relation to Seed Dormancy of 18 Rubus Species in Korea

  • Choi, Go Eun;Jeong, Mi jin;Lee, Hayan;Ko, Chang Duck;Park, Jae In;Ghimire, Balkrishna
    • Journal of agriculture & life science
    • /
    • v.51 no.6
    • /
    • pp.15-22
    • /
    • 2017
  • The microstructure observation of seed surface structure is needed for protocols of breaking dormancy of seeds with physical dormancy. The seeds of Rubus species are surrounded by a thick, hard endocarp; together, the seed and endocarp make up the stone. We evaluate stone characteristics of 18 species of Rubus through optical microscopic observation, and correlate different stone characteristics with endocarp thickness. As a result of stone size comparison, Rubus species were classified as big stones group including R. parvifolius and R. idaeus, small stones group including R. longisepalus var. longisepalus, R. corchorifolius and R. hirsutus, and middle stones group including rest of the species. The result of this study revealed that stone size and the endocarp thickness in Rubus species was various characteristics in each species. Furthermore stone size and stone weight were also well correlated endocarp thickness and result indicated that heavy stones had harder endocarp than lighter one. Thus from the result of this study it can be presumed that only one stone characteristic approach may be sufficient to estimate other characteristics in Rubus.

Ecophysiology of seed dormancy and germination in four Lonicera (Caprifoliaceae) species native to Korea

  • Park, HyungBin;Ko, ChungHo;Lee, SeungYoun;Kim, SangYong;Yang, JongCheol;Lee, KiCheol
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.254-262
    • /
    • 2019
  • Background: To exploit the ornamental and medicinal purposes of Lonicera harae Makino, L. subsessilis Rehder, L. praeflorens Batalin, and L. insularis Nakai, native to Korea, it is necessary to understand their seed ecology for propagation. In this study, we investigated the seed dormancy type and germination characteristics of seeds of the four Korean native Lonicera species. Results: The seeds of the four Lonicera species imbibed water readily, suggesting that the species do not have physical dormancy. Furthermore, the seeds exhibited underdeveloped embryos with only about 15-25% of the length of the seeds at dispersal. The embryos grew to the critical length with approximately 50-80% of the length of the seeds' development before radicle protrusion. Further, 94.4% and 61.1% of freshly matured seeds of L. insularis and L. harae germinated within 4 weeks after sowing at 15 ℃ and 20 ℃, respectively. Contrarily, L. praeflorens and L. subsessilis seeds did not germinate within 4 weeks under all temperature treatments. At 15 ℃, L. praeflorens seeds started to germinate from 5 weeks and the final germination rate was 51.1% at 13 weeks. At 15 ℃, L. subsessilis seeds started to germinate from 5 weeks after sowing and the final germination rate was 85.6% at 17 weeks after sowing. Embryo growth and germination of L. praeflorens and L. subsessilis occurred at a relatively high temperature (≥ 15 ℃). Conclusions: Overall, L. insularis seeds have only morphological dormancy. The seeds of L. harae have approximately 60% and 40% of morphological dormancy and morphophysiological dormancy, respectively. Contrarily, L. praeflorens and L. subsessilis exhibited non-deep simple-type morphophysiological dormancy that requires relatively high temperature (≥ 15 ℃) for embryo growth and dormancy breaking. The optimum temperature for the germination of seeds of L. insularis, L. harae, L. praeflorens, and L. subsessilis was 15 ℃, 20 ℃, 15 ℃, and 20 ℃, respectively. There was interspecific variation in seed dormancy and germination patterns in the four Lonicera species. The difference in these characteristics within the four Lonicera species could be useful for understanding the seed ecophysiological mechanisms of Lonicera species.

Effect of Gibberellin and Light on Germination of Seeds in Codonopsis lanceolata Benth

  • Ghimire, Bimal Kumar;Shin, Chul-Min;Li, Cheng-Hao;Chung, Ill-Min;Lee, Dong-Wook;Kim, Hee-Young;Kim, Na-Young;Lim, Jung-Dae;Kim, Jae-Kwang;Kim, Myong-Jo;Cho, Dong-Ha;Lee, Sun-Joo;Yu, Chang-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.14 no.5
    • /
    • pp.303-306
    • /
    • 2006
  • Seed of Codonopsis lanceolata exhibits low germination due to impermeable seed coat. Prolonged seed dormancy can be overcome by the application of gibberellins, as it promotes growth of the embryo and weakens the structures surrounding of embryo. The effects of photoperiod, sugar and gibberellin concentration were investigated at constant temperature for 12 days and 22 days in vitro and invivo conditions respectively. The rate of germination of seeds of Codonopsis lanceolata in wet filter paper in both complete dark and light treatments was significantly lower than that of seed treated with $GA_3$. It clearly indicates that there is significant coat imposed dormancy in the seed of Codonopsis lanceolata. The rate of germination in vivo condition was lower than that of the in vitro condition supplemented with $GA_3$ Thus, the physical dormancy due to impermeable seed coat and low level of endogenous gibberellins in the seed was the cause of poor germination rate in Codonopsis lanceolata.

Dormancy type and Germination Characteristics of Seeds of Lonicera chrytsantha Turcz. Ex Ledeb (Caprifoliaceae) (각시괴불나무 종자의 휴면유형과 발아특성)

  • Park, Hyung Bin;Ko, Chung Ho;Kim, Sang Yong;Lee, Ki Cheol;Kim, Jae Hyeun;Chung, Jae Min
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.457-462
    • /
    • 2019
  • This study was conducted to investigate seed dormancy type and germination characteristics of Lonicera chrysantha. In imbibition test, the seeds imbibed water readily. Therefore, the seeds did not have physical dormancy (PY). The seeds have undeveloped embryo at seed dispersal and, then the E:S ratio (embryo/seed ratio) increased more than about 46% just before germination. In temperature experiments (5, 15, 20 and $25^{\circ}C$), the seeds did not germinate during incubation at $5^{\circ}C$. At $20^{\circ}C$, the seeds started to germinate from a week after sowing and the final germination was 86.7% at 2 weeks after sowing. At $15^{\circ}C$, the seeds started to germinate at 2 weeks and the final germination rate was 75.0% at 4 weeks after sowing. At $25^{\circ}C$, the seeds started to germinate at a week and the final germination rate was 48.3% at 19 weeks after sowing. Consequently, Optimum temperature of germination is $20^{\circ}C$ that shown highest final germination rate and shortest mean germination time. The seeds germinated all temperature treatments within 4 weeks except to $5^{\circ}C$. Therefore, it is concluded that seeds of L. chrysantha have only morphological dormancy (MD).

Seed Dormancy Type and Germination Characteristics in Tiarella polyphylla D. Don Native to Korea (한반도 자생식물 헐떡이풀 종자의 휴면유형과 발아특성)

  • Choi, Han;Lee, Seung Youn;Rhie, Yong Ha;Lee, Jeong Ho;Kim, Sang Yong;Lee, Ki Cheol
    • Korean Journal of Plant Resources
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2018
  • Tiarella polyphylla D. Don is a native plant distributed only in Ulleung Island in Korea and has been traditionally used for medicinal purposes, although it is also used ornamentally. This study was conducted to determine the requirements for dormancy break and germination and to classify the type of seed dormancy. The experiments were performed with cold stratification (0 or 12 weeks at $5^{\circ}C$), warm stratification (0, 4, 8, or 12 weeks at $23^{\circ}C$, followed by 8 weeks at $5^{\circ}C$, and then incubation at $23^{\circ}C$), and $GA_3$ treatments (0, 10, 100, or 1000 mg/L). The treated seeds were incubated on aseptic media at room chamber ($23^{\circ}C$, a 16h photoperiod of fluorescent lamps with $40{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$). The seeds were dispersed in nature as underdeveloped embryos with no physical barrier to absorb water to prevent water absorption. However, the seeds did not germinate for 30 days after sowing without any pre-treatments. Thus, the seeds had morphological dormancy (MD) and physiological dormancy (PD). The final germination percentage following cold stratification (0 or 12 weeks) was 66.7% and 45.6%, respectively. The cold stratification delayed seed germination by about 3 weeks. In the warm stratification experiment (0, 4, 8, or 12 weeks), the final germination percentage was 21.1%, 27.8%, 41.1%, and 57.8%, respectively, 20 weeks after sowing. The embryos of the T. polyphylla seed grew in relatively warm temperatures ($23^{\circ}C$). $GA_3$ application overcame seed dormancy and promoted germination. Following $GA_3$ treatment (0, 10, 100, or 1000 mg/L), the final germination percentage was 33.3%, 45.0%, 42.5%, and 72.5%, respectively. These results suggest that the T. polyphylla seeds had non-deep simple morphophysiological dormancy (MPD) and $GA_3$ treatment could be used as a substitute for warm stratification for breaking seed dormancy. To our knowledge, this is the first report of seed dormancy characteristics of the genus Tiarella native to Korea.

Physiological and Ecological Studies on the Seed Dormancy of Dominant Weed Species in Korea (우리나라 우점(優占) 잡초종(雜草種)의 휴면(休眠)에 관한 생리(生理) 생태학적(生態學的) 연구(硏究))

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak;Shin, Hyeun-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.2
    • /
    • pp.193-207
    • /
    • 1993
  • The seed dormancy of weed species is the important mechanisms to unfavorable conditions but it brings about critical problems in weed control. The factors which induced dormancy were varied with species and their physiological conditions. More than 20 of 50 species of dominant weed species showed the seed dormancy. When several physical treatments were given to seeds to break the dormancy, each species showed the different responses. The germination percentage and germination velocity were increased with alternating temperature. The treatment of more than 4 weeks of stratification had strong effect on dormancy breaking. The ${\alpha}-amylase$ activities of germinating seeds were increased in proportional to the period of stratification treatment of dormant seeds. The contents of soluble protein and soluble sugar were changed slightly with stratification.

  • PDF

Classification of Seed Exogenous Dormancy in Korean Native Plants (자생식물 종자의 외생휴면 분류)

  • Ju Sung Cho;Kyungtae Park;Sang Yeob Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.10-10
    • /
    • 2020
  • 전 지구적으로 생물다양성의 지속적인 감소 추세에 따른 생물자원의 중요성이 증가하는 시점에서, 식물 유전자원의 종 다양성 보존과 지속가능한 이용을 위한 체계적이고 현실적인 방안 마련이 절실한 실정이다. 국내에서도 2017년에 유전자원 접근 및 이익 공유에 대한 나고야 의정서가 발효됨에 따라 식물유래 BT산업 소재의 국내 자급이 불가피해진 상황이며, 더불어 국토의 생태복원에 적합한 식물 소재 개발의 중요성이 대두되면서 자생식물의 종자 수급기반 대책은 국가적 차원에서 중대한 과제라 할 수 있다. 우리나라는 면적 대비 높은 식물 종 다양성을 보이며, 이는 종자의 휴면유형 또한 다양하고 복잡할 수 있다는 것을 의미한다. 따라서 식물유전자원으로써의 보존 및 국가 경제적 이익을 위한 종자 활용, 산업화를 위해서는 종자의 생리적 특성에 기반 한 데이터베이스의 축적과 효과적인 활용을 위한 종자 휴면유형 분류 및 적정 휴면타파 조건을 확립할 필요가 있다. 현재까지 다양한 식물종에서 종자 휴면의 하위 카테고리가 계속적으로 세부 분류되고 있으나, 아직까지 밝혀지지 않은 세부 휴면유형에 의해 많은 유용 식물자원의 활용이 제한적이다. 종자의 휴면유형은 크게 외생휴면(Exogenous dormancy)과 내생휴면(Endogenous dormancy)으로 분류되며, 국내에서는 내생휴면에 대한 연구가 주를 이루고 있다. 한편 외생휴면은 물리적 휴면(Physical dormancy), 기계적 휴면(Mechanical dormancy) 및 화학적 휴면(Chemical dormancy)으로 세부 분류되며, 기계적 휴면과 화학적 휴면은 내생휴면인 생리적 휴면(Physiological dormancy)에 포함되어야 한다는 의견도 있다. 물리적 휴면 종자에서는 water-gap 복합체의 존재 등에서 원인을 찾을 수 있으나, 발아억제 호르몬에 기인하는 화학적 휴면 및 종(과)피 또는 배유에 의한 기계적 휴면은 배의 성장잠재력과 발달에 의해 타파될 수 있다. 이와 같이 실제로 많은 식물 종에서 다양하게 존재하는 외생휴면 유형에 대해 내생휴면과는 명확히 다른 방식으로 접근되어야 하므로, 다년간의 체계적 연구를 통해 미흡한 종자생리 연구 분야를 보완하고 자생식물의 종자 활용도를 높일 수 있을 것으로 기대한다.

  • PDF

Changes of Seed Quality of Chinese Milk Vetch(Astragalus sinicus L.) During Seed Developmental Stages

  • Na, Chae-Sun;Lee, Yong-Ho;Hong, Sun-Hee;Jang, Cheol-Seong;Kang, Byeung-Hoa;Lee, Jong-Ki;Kim, Tae-Ho;Kim, Wook
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.4
    • /
    • pp.363-369
    • /
    • 2007
  • The objective of this study was to investigate the variation of Chinese milk vetch(Astragalus sinicus L.; CMV) seed quality after flowering. We tagged individual open flowers of CMV at the day of maximum flowering(11 May) in Seoul, Korea. Seed samples were harvested serially at 15, 20, 25 and 30 days after flowering(DAF). To compare with dried seeds, non-dried seeds were tested immediately after harvest and the remaining seeds were placed at room temperature for 4 weeks. Seed length, 1000 seed weight, moisture content, germination rate(GR), mean germination time(MGT), germination speed(GS), germination performance index(GPI) and physical dormancy rate(PDR) were investigated. Seed length increased to 2.6 mm and 1000 seed weight reached up to 2.2 g until 25 DAF. Seed moisture content dramatically decreased from 20 to 25 DAF. Moisture content of non-dried seed(7.5%) was similar to that of dried seed(5.5%) at 25 DAF. The rate of seed viability reached up to 94% at 25 DAF. In case of dried seed, GR increased up to 39% at 25 DAF whereas GR of non-dried seed varied from 5 to 10%. GS and GPI of dried seed were significantly higher than those of non-dried seed since 25 DAF. PDR of dried seed has decreased since 20 DAF, whereas PDR of non-dried seed has increased. GR, GS and GPI increased as PDR decreased. Our results evidenced that PDR might be one of major factor in variation of seed quality, of which development was completed at 25 DAF.