• 제목/요약/키워드: Sediment release

검색결과 167건 처리시간 0.034초

폐쇄성 내만에 있어서 수질$\cdot$저질 상호작용 모델링 (Modeling of Water Quality with Sediment-Water Interaction at Sea Bottom in Semi-enclosed Coastal Waters - Application to Osaka Bay)

  • 한동진;윤종성
    • 한국해안해양공학회지
    • /
    • 제17권3호
    • /
    • pp.129-137
    • /
    • 2005
  • 본 연구에서는 수층(water body싻 저니의 상호작용을 시뮬레이션하기위해 저질 모델을 구축하였다. 본 연구에서 구축한 모델은, 수층에서 저니층으로의 유기물질의 침강, 그리고 저니층에서 수층으로의 질소와 인의 용출을 상호작용으로 고려한 모델이다. 구축된 모델을 검증하기 위해 실측치를 이용하여 모델 재현성의 검토를 실시하였다. 오사카만을 대상으로 모델에 의해 얻어진 인의 용출속도를 실측치와 비교하였다. 그 결과 계산치와 실측치는 거의 일치하였으며, 계절별 용출속도의 변동 특성이 양호하게 재현되었다 1950년부터 1999년에 걸쳐 약 50년간 수질과 저질의 재현 계산을 실시하여 모델의 재현성과 적용성을 평가하였다. 육지로부터의 오염물질 부하량과 수질의 경계조건, 그리고 3차원 유동모델의 경계조건에 대해서는 계절별 관측치를 이용하여 설정하였다. 계산 결과 질소, 인, 그리고 COD농도 및 장기간에 걸친 수질의 변동특성이 양호하게 재현되었다.

Distribution of Vital, Environmental Components and Nutrients Migration Over Sedimentary Water Layers

  • Khirul, Md Akhte;Kim, Beom-Geun;Cho, Daechul;Kwon, Sung-Hyun
    • 한국환경과학회지
    • /
    • 제30권3호
    • /
    • pp.195-206
    • /
    • 2021
  • Contaminated marine sediment is a secondary pollution source in the coastal areas, which can result in increased nutrients concentrations in the overlying water. We analyzed the nutrients release characteristics into overlying water from sediments and the interaction among benthic circulation of nitrogen, phosphorus, iron, and sulfur were investigated in a preset sediment/water column. Profiles of pH, ORP, sulfur, iron, nitrogen, phosphorus pools were determined in the sediment and three different layers of overlying water. Variety types of sulfur in the sediments plays a significant role on nutrients transfer into overlying water. Dissimilatory nitrate reduction and various sulfur species interaction are predominantly embodied by the enhancing effects of sulfide on nitrogen reduction. Contaminant sediment take on high organic matter, which is decomposed by bacteria, as a result promote bacterial sulfate reduction and generate sulfide in the sediment. The sulfur and iron interactions had also influence on phosphorus cycling and released from sediment into overlying water may ensue over the dissolution of ferric iron intercede by iron-reducing bacteria. The nutrients release rate was calculated followed by release rate equation. The results showed that the sediments released large-scale quantity of ammonium nitrogen and phosphate, which are main inner source of overlying water pollution. A mechanical migration of key nutrients such as ammonia and inorganic phosphate was depicted numerically with Fick's diffusion law, which showed a fair agreement to most of the experimental data.

Distribution of Nutrients in Dae-Cheong Reservoir Sediment

  • Hwang Jong Yeon;Han Eui Jung;Kim Tae Kehn;Kim Shin Jo;Yu Soon Ju;Yoon Young Sam;Jung Yong Soon;Park Pan Wook
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제2권2호
    • /
    • pp.169-179
    • /
    • 1998
  • This paper was performed to estimate interrelations between humus level of sediments and nutrient release from sediments in Dae-cheong reservoir. For investigations, sediments were sampled in June and October, in 1997 at fish farms, embayment, and the main stream of Dae-cheong reservoir. Items for investigation are as follows; water content, weight loss on ignition(IG), porosities of sediments, contents of element such as hydrogen, nitrogen, carbon, and nutrient release rates. Water contents and porosities were measured to conjecture the physical trait and grain size trait. Weight loss on ignition was measured to determine the contents of organic substance. For determination of the humus level of sediments, carbon and nitrogen contents were measured by elemental analyzer. As a result of elemental analysis, C/N ratio was determined in the range of $3.0\~13.1$. From the elemental analysis, humus level of Dae-cheong reservoir sediment was estimated from mesohumic state to oligotrophic state. For the determination of nutrient release rate, $PO_4-P$ and $NH_4-N$ concentrations of interstitial water and overlying water were measured. By using the concentration difference between interstitial water and overlying water and using the Fick's diffusion law, the release rates of phosphorus and nitrogen from the sediment samples were calculated. Release rates of nutrients which directly influence to the water quality were $0.05\~8.63mgP/m^2day$ and $4.99\~36.56mgP/m^2day$. It was found that release rate was measured higher in the 1st sampling period than in the 2nd sampling period. For the determination of phosphorus content in sediment, TPs were measured in 807\~1542{\mu}g/g$ in the 1st samling period and $677\~5238{\mu}g/g$ in the End samling period. Phosphorus release rate and phosphorus content were not interrelated each other.

  • PDF

의암호에서 퇴적물 용출에 대한 수온, 빛과 퇴적물 제거의 영향 (Effects of Water Temperature, Light and Dredging on Benthic Flux from Sediment of the Uiam Lake, Korea)

  • 윤석제;김헌년;김용진;임종권;이은정;유순주
    • 한국물환경학회지
    • /
    • 제33권6호
    • /
    • pp.670-679
    • /
    • 2017
  • An experiment to study the effect of temperature, light, and dredging on release of nutrients downstream from Gongjicheon in the Uiam reservoir was carried out in the laboratory using sediments from different depths. At various water temperatures, dissolved total nitrogen was not released, but the average nutrient flux of dissolved total phosphorus was increased (0.034 at $15^{\circ}C$, 0.005 at $20^{\circ}C$, 0.154 at $25^{\circ}C$, $0.592mg/m^2/d$ at $30^{\circ}C$). Dissolved total phosphorous was released in controlled darkness. In contrast, in controlled light, the concentrations of dissolved total phosphorous and dissolved total nitrogen in the overlying water steadily decreased during the study period (70 d), because they were continuously consumed by the growth of photosynthetic algae. However, there was no significant relationship between water nutrient concentration, nutrient release, and the depth of the sediment. We concluded that the dredging of sediment would not affect the nutrient release rate of the sediment, because there were no significant differences in the nutrient concentrations released from the sediment. When the sediment was removed from the surface to 20 cm in depth, the nutrients were not transferred to the water body, implying that the sediment removal had little effect on secondary pollution.

Impoundments Increase Potential for Phosphorus Retention and Remobilization in an Urban Stream

  • Vo, Nguyen Xuan Que;Doan, Tuan Van;Kang, Hojeong
    • Environmental Engineering Research
    • /
    • 제19권2호
    • /
    • pp.175-184
    • /
    • 2014
  • Weirs are conventional structures that control water level and velocity in streams to facilitate water resource management. Despite many weirs built in streams, there is little information how weirs change hydrology regime and how that translates to sediment and phosphorus (P) responses. This study evaluated the influence of weirs on P retention and mobilization in an urban tributary of the Han River in Korea. Total P concentrations in sediments upstream of weirs were higher than the downstream site, mainly due to the increase of potentially available fractions (labile P and aluminum- and iron-bound P) (p < 0.05). Equilibrium phosphorus concentrations ($EPC_o$) were lower than soluble reactive phosphorus (SRP) concentrations of stream waters, but there was an increasing trend of sediment $EPC_o$ upstream of weirs compared to the downstream site (p < 0.001) indicating a greater potential for P release upstream of weirs. Sediment core incubation showed that SRP release rates upstream of weirs were higher than the downstream site under anoxic conditions of the water column (p < 0.01), but not under oxic conditions. SRP release rates under anoxic conditions were greater than that measured under oxic conditions. Un-neutral pH and increased temperature could also enhance SRP release rates upstream of weirs. We conclude that weirs can increase P retention within stream sediments and potentially promote significant P releases into waters, which in turn cause eutrophication.

홍수조절댐에서의 배사관 설치에 따른 상류 하천의 하상변동에 관한 수치모의 연구 (Numerical Analysis for Bed Changes in the Upstream Channel due to the Installation of Sediment Release Openings in the Flood Control Dam)

  • 지운;손광익;김문모
    • 한국수자원학회논문집
    • /
    • 제42권4호
    • /
    • pp.319-329
    • /
    • 2009
  • 홍수피해를 경감시키고 홍수조절을 목적으로 계획되는 홍수조절용댐의 경우 홍수 발생 기간 외에는 상류와 하류 하천간의 흐름 차단을 억제하고 상류로부터 유입되는 유사가 댐 상류 부분에 퇴적되는 현상을 방지하기 위해 댐에 상시 개방되어 있는 배사관을 설치하기도 한다. 국내에서는 임진강 유역의 홍수피해 저감을 위해 건설되는 한탄강홍수조절댐에 배사관과 생태통로를 설치하도록 계획되었다. 본 연구에서는 1차원 HEC-6 모형을 이용하여 한탄강홍수조절댐 건설로 인한 댐 상류의 퇴사현상을 댐 건설 전의 현상과 비교 분석하였으며 연평균유량 조건뿐만 아니라 연간 유량변동을 고려한 대표유량수문곡선을 적용하여 퇴사현상을 모의하였다. 수치모의 결과, 댐 건설로 인한 하류단 수위 변화가 발생하더라도 하상변동의 영향은 댐에서 상류 2 km 구간을 넘지 않는 것으로 나타났다. 또한 댐 건설 후 배사관의 설치 유무에 따른 배사관 주변과 댐 상류 하상 변화를 예측하기 위해 2차원 RMA2 및 SED2D 모형을 이용하였으며 한탄강홍수조절용댐의 댐 저부에 설치된 배사관의 배사효과는 저수지 내의 퇴적고를 저감시키는 효과가 있는 것으로 나타났다.

The Importance of Nitrogen Release and Denitrification in Sediment to the Nitrogen Budget in Hiroshima Bay

  • KIM Do-Hee;MATSUDA Osamu
    • 한국수산과학회지
    • /
    • 제29권6호
    • /
    • pp.779-786
    • /
    • 1996
  • The main purpose of this study was to estimate the role of dissolved inorganic nitrogen (DIN) released from sediment and denitrification process in sediment on the nitrogen budget of Hiroshima Bay by means of collecting data on distributions and budgets of nitrogen and phosphorus in the bay, DIN fluxes across sediment-water interface and denitrification rates in the sediments of the same area. The TN : TP and DIN:DIP atomic ratios of the discharged freshwater were about 26 and 21, respectively. The standing stocks in the seawater of the TN : TP atomic ratio varied from 8 to 14 with an annual mean value of 11, while the DIN : DIP atomic ratio varied from 10 to 15 with an annual mean value of 12 in the bay. The residence time of nitrogen and phosphorus were estimated to be about 109 days and 200 days in the bay, respectively. The proportion of DIN released from sediment and denitrification rate to the loading of total nitrogen into Hiroshima Bay were $45\%\;(37\~82\%)\;and\;13\%(0.0\~37\%)$, respectively, and the amount of nitrogen through denitrification process was 6.5 times larger than the outflow of nitrogen from the bay. The results show that DIN released from sediment and denitrification process in sediment play important roles on the nitrogen budget in Hiroshima Bay.

  • PDF

Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment

  • Khirul, Md Akhte;Cho, Daechul;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • 제25권3호
    • /
    • pp.274-280
    • /
    • 2020
  • The marine sediment sustains from the anoxic condition due to increased nutrients of external sources. The nutrients are liberated from the sediment, which acts as an internal source. In hypoxic environments, anaerobic respiration results in the formation of several reduced matters, such as N2 and NH4+, N2O, Fe2+, H2S, etc. The experimental results have shown that nitrogen and sulfur played an influential, notable role in this biogeochemical cycle with expected chemical reductions and a 'diffusive' release of present nutrient components trapped in pore water inside sediment toward the bulk water. Nitate/ammonium, sulfate/sulfides, and ferrous/ferric irons are found to be the key players in these sediment-waters mutual interactions. Organonitrogen and nitrate in the sediment were likely to be converted to a form of ammonium. Reductive nitrogen is called dissimilatory nitrate reduction to ammonium and denitrification. The steady accumulation in the sediment and surplus increases in the overlying waters of ammonium strongly support this hypothesis as well as a diffusive action of the involved chemical species. Sulfate would serve as an essential electron acceptor so as to form acid volatile sulfides in present of Fe3+, which ended up as the Fe2+ positively with an aid of the residential microbial community.

팔당호와 청평호 퇴적물에서 영양염류 용출 특성 (Characteristics of Release Rate of Nutrients from Sediment in Lake Paldang and Lake Cheongpyeong)

  • 이규;최명재;박혜경;이장호
    • 한국물환경학회지
    • /
    • 제25권5호
    • /
    • pp.742-749
    • /
    • 2009
  • To examine the characteristics of the nutrient release from the sediments in two reservoirs, Lake Paldang and Lake Cheungpyeung, we analyzed physical and chemical properties of the sediments and calculated the nutrient release rates from the sediments. The particle properties of sediments in Lake Paldang changed from silt to sand after summer rainy season, especially in the water area of the Kyeungan River where the water depth was shallow and the width of river was narrow. The sediments in Lake Cheungpyeung had higher contents of silt and clay than in Lake Paldang, and the particle size was not much different before and after rainfall. The release rates of nutrients in two lakes varied with the kind of nutrients and the season. The release rates of DTN and ${NH_4}^+-N$ in Lake Paldang were faster in spring than autumn. But the Lake Cheungpyeung showed similar values of release rates before and after summer rainy season. ${NO_3}^--N$ and phosphorous were not released from sediments or were absorbed into sediments all the time in two lakes. Compared with other lakes, the sediments of two lakes consisted of bigger particles and had a lower organic matters content than other lake-type reservoirs. Due to the short hydraulic retention time and no stratification throughout the year in Lake Paldang and Lake Cheungpyeung, the release rates of nutrients from sediment in these reservoirs were lower than other lakes and this seems to be a typical characteristic of river-type reservoirs.