• Title/Summary/Keyword: Sediment quality

Search Result 593, Processing Time 0.025 seconds

Spatio-Temporal Trends in Temperature, Acidification and Dissolved Oxygen in Lower Mekong Basin for 1985-2005

  • Ratanavong, Nilapha;Lim, Sam-Sung;Lee, Hyung-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.3-12
    • /
    • 2011
  • Understanding of water sediment trends is an important part of water quality monitoring. Water quality variables change over time and space, and cannot be modeled or explained clearly by either temporal or spatial analysis alone. This research analysed the trends of temperature, pH levels and dissolved oxygen levels based on the sediment records and spatial data obtained in Lower Mekong Basin (LMB) during 1985-2005. Our aim is to evaluate spatio-temporal trends and graphical analyses using an Inverse Distance Weighting (IDW) interpolation method. The main results from this research can be summarized as follows. The maximum temperature and pH have been stable during the study period and the maximum dissolved oxygen has been increasing gradually until 2002. The minimum pH and dissolved oxygen have been changing in an unsteady trend during the period. A spatial analysis shows that the water temperature in this region has been increasing over time. The pH trend shows that it is decreasing during 1993-2005. Dissolved oxygen concentration has been increasing from 1989 onwards and stays in that track.

Application of Ecosystem Model for Eutrophication Control in Coastal Sea of Saemankeum Area -2. Quantitative Management of Pollutant Loading- (새만금 사업지구의 연안해역에서 부영양화관리를 위한 생태계모델의 적용 -2. 오염부하의 정량적 관리-)

  • Kim Jong Gu;Kim Yang Soo;Cho Eun Il
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.35 no.4
    • /
    • pp.356-365
    • /
    • 2002
  • One of the most important factors that cause eutrophication is nutrient materials containing nitrogen and phosphorus which stem from excreation of terrestial sources and release from sediment. Therefore, to improve water quality, the reduction of these nutrients loads should be indispensible. At this study, the three-dimensional numerical hydrodynamic and ecosystem model, which was developed by Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the eutrophication. The residual currents, which were obtained by integrating the simulated tidal currents over 1 tidal cycle, showed the presence of a typical counterclockwise eddies between Gyewha and Garyuk island. Density driven currents were generated westward at surface and eastward at the bottom in Saemankeum area where the fresh waters are flowing into, The ecosystem model was calibrated with the data surveyed in the field of the study area in annual average. The simulated results were fairly good coincided with the observed values within relative error of $30\%$. The simulations of DIN and DIP concentrations were performed using ecosystem model under the conditions of $40\~100\%$ pollution load reductions from pollution sources. In study area, concentration of DIN and DIP were reduced to $59\%$ and $28\%$ in case of the $80\%$ reduction of the input loads from fresh water respectively. But pollution loads from sediment had hardly affected DIN and DIP concentration, The $95\%$ input load abatement is necessary to meet the DIN and DIP concentration of second grade of ocean water quality criteria.

Classification of Spring Types in the Western Coastal Area of Jeju Island, Korea, Based on the Hydrogeological Characteristics (수리지질 특성을 고려한 제주도 서부 해안지역 용천의 유형 분류)

  • Koh Chang-Seong;Koh Eun-Hee;Park Won-Bae;Koh Gi-Won
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.25-35
    • /
    • 2023
  • This study aimed to classify spring types based on the hydrogeological characteristics of springs in Yongsu-ri~Hamo-ri coastal area in western part of Jeju Island. The springs in study area can be broadly categorized into three groups: perched groundwatrer springs (soil type), perched groundwater springs (sediment type), and basal groundwater springs. The perched groundwater springs of soil type correspond to springs where groundwater seeps out from the perched aquifer formed in the soil layer due to the development of clayey Kosan Formation beneath the surface. Because of the low hydraulic conductivity of soil layer, the average of spring discharge is less than 1 m3/day. The quality of spring water is significantly influenced by agricultural activities, resulting in high nitrate nitrogen concentrations and electrical conductivity. While the perched groundwater springs (sediment type) of the Suwolbong Tuff, which are located in the upper part of Kosan Formation, exhibited relatively higher discharge rates, their water quality was similar to soil-type springs. Basal groundwater springs are located in the zone of basal groundwater, mostly near the coastline. This type of spring appears to discharge of up to 3,707 m3, and the salinity content varies with the tidal fluctuations, especially increasing significantly during dry seasons.

Urbanization and Quality of Stormwater Runoff: Remote Sensing Measurements of Land Cover in an Arid City

  • Kang, Min Jo;Mesev, Victor;Myint, Soe W.
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.399-415
    • /
    • 2014
  • The intensity of stormwater runoff is particularly acute across cities located in arid climates. During flash floods loose sediment and pollutants are typically transported across sun-hardened surfaces contributing to widespread degradation of water quality. Rapid, dense urbanization exacerbates the problem by creating continuous areas of impervious surfaces, perforated only by a few green patches. Our work demonstrates how the latest techniques in remote sensing can be used to routinely measure urban land cover types, impervious cover, and vegetated areas. In addition, multiple regression models can then infer relationships between urban land use and land cover types with stormwater quality data, initially sampled at discrete monitoring sites, and then extrapolated annually across an arid city; in our case, the city of Phoenix in Arizona, USA. Results reveal that from 30 storm event samples, solids and heavy metal pollutants were found to be highly related with general impervious surfaces; in particular, with industrial and commercial land use types. Repercussions stemming from this work include support for public policies that advocate environmental sustainability and the more recent focus on urban livability. Also, advocacy for new urban construction and re-development that both steer away from vast unbroken impervious surfaces, in place of more fragmented landscapes that harmonize built and green spaces.

A Study on Water Quality Impact by Pollution Source in Yongwon Channel, Busan Newport (부산신항 용원수로에서의 오염원별 수질영향 조사)

  • Kwon, Jae Hyun;Kim, Young Do;Jung, Jae Hoon;Jeong, Weon Mu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.2
    • /
    • pp.185-196
    • /
    • 2013
  • In Yongwon channel, its natural flow of seawater is blocked by the construction of Busan Newport including the container berth. The channel was transformed into a narrow and long one, where it is possible that ships are only allowed to pass through the north-side channel of Gyeonmado located at the point of river mouth to Songjeongcheon. In addition, Yongwon channel is approximately 100 m wide on average and 3,600 m long, which has the highest slenderness ratio (length/width=36). So it is considered that the changes in the terrain characteristics of Yongwon channel is likely to alter the circulation of sea water, thereby changing its water quality. In this study, the seasonal change and the spatial variation of the water quality in Yongwon channel was analyzed for the effect of land pollution using the measurement data. The mass balance calculation method is used to analyze the water pollution resulting from sediment pollutants. This result shows that the improvement of the water quality in Yongwon channel can be obtained from the sewer pipe modification and the environmental dredging.

The Effect of Input Variables Clustering on the Characteristics of Ensemble Machine Learning Model for Water Quality Prediction (입력자료 군집화에 따른 앙상블 머신러닝 모형의 수질예측 특성 연구)

  • Park, Jungsu
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.5
    • /
    • pp.335-343
    • /
    • 2021
  • Water quality prediction is essential for the proper management of water supply systems. Increased suspended sediment concentration (SSC) has various effects on water supply systems such as increased treatment cost and consequently, there have been various efforts to develop a model for predicting SSC. However, SSC is affected by both the natural and anthropogenic environment, making it challenging to predict SSC. Recently, advanced machine learning models have increasingly been used for water quality prediction. This study developed an ensemble machine learning model to predict SSC using the XGBoost (XGB) algorithm. The observed discharge (Q) and SSC in two fields monitoring stations were used to develop the model. The input variables were clustered in two groups with low and high ranges of Q using the k-means clustering algorithm. Then each group of data was separately used to optimize XGB (Model 1). The model performance was compared with that of the XGB model using the entire data (Model 2). The models were evaluated by mean squared error-ob servation standard deviation ratio (RSR) and root mean squared error. The RSR were 0.51 and 0.57 in the two monitoring stations for Model 2, respectively, while the model performance improved to RSR 0.46 and 0.55, respectively, for Model 1.

Effects of Paddle Wheel on Water Circulation in Shrimp Culture Ponds (축제식 대하양식장에서 수차의 순환기능)

  • 강윤호
    • Journal of Aquaculture
    • /
    • v.14 no.1
    • /
    • pp.43-50
    • /
    • 2001
  • To study the effect of paddle wheel on water circulation, velocity components were measured in shrimp ponds both along the longitudinal direction from a single paddle wheel and at 25 grid points of two ponds, which have mean water depth of 1.2m and aspect ratio (length/width) 1.05 and 0.68, respectively. An analysis of factors related to water quality and circulation showed that I) a single paddle wheel has an effective distance of 33m for de-stratification, 16m for particulate suspension and 25m for removal of organic material, dispersion of DO and prevention of bed sediment disturbance and ii) with doubling the number of paddle wheels at the pond corners, the flow speed increased by 13% over the ponds, while it reduced by 8.5% around the pond centres. Contrary to expectation, increasing the number of paddle wheel did not generate strong circulation around the pond centre and improve water quality.

  • PDF

Environmental Evaluation of Sediment Quality for Small Scale Marine Ranch around the Gunsan Coastal Areas (군산해역에 있어서 소규모 바다목장화를 위한 해양저질 환경 평가)

  • Kim, Jong-Hwa;Kim, Jong-Kyu;Park, Byung-Soo
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.20 no.3
    • /
    • pp.508-519
    • /
    • 2008
  • Hot air drying is a method that let moistures evaporate by heat exchange between heating air and dry target. This way is dominating more than about 70% of dryers that the use extent is wide fairly, and is established in domestic than dryer that use conduction or radiation etc. Most of research about drying had been emphasized in size of device through analysis for these dry phenomenon plain, heating topology, and aspect of form and so on by dry target's special quality, and research about device development or waste heat withdrawal technology in energy utilization efficiency side is slight real condition. Therefore, in this study, Investigated numerically about thermal efficiency elevation that is leaned against as that change the temperature of inlet and outlet in heat exchanger of the hot air drying tower.

A Study on the Water Quality Prediction in Rural Watershed Using SWAT-WASP Model (SWAT-WASP 모형을 이용한 농촌유역의 수질예측에 관한 연구)

  • 권명준;권순국
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.708-714
    • /
    • 1999
  • For the assessment of the level of stream pollution, SWAT-WASP model linked with GIS was applied to a respresentative rural watershed and evaluated for its applicability through calibration and verfication using observed data. Using daily water yields, sediment yields and nutrient discharge simulated by SWAT model, WASP input file was build. Point source pollutant and water quality change in stream was considered in WASP model. For the model applicatiion , digital maps were constructed for watershed boundary, ladn-use , soil series , digital elevation, and topographic data of Bok-Ha watershed using GRASS. The model application results showed that the simulated runoff was in a good agreement with the observed data and indicated reasonable applicability of the model.

  • PDF