• Title/Summary/Keyword: Sediment particle size

Search Result 172, Processing Time 0.029 seconds

Laboratory Study of Phosphorus Fractionation in the Sediments of Yeongsan River (영산강 퇴적물 인의 존재형태에 대한 실험실 연구)

  • Oh, Hae Seong;Huh, In Ae;Choi, Jung Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.9
    • /
    • pp.519-526
    • /
    • 2017
  • This study investigated the effect of phosphorus fractionation on the phosphorus release from the sediments of Juksan reservoir in Yeongsan River. The field sediments were collected, incubated, and analyzed with respect to phosphorus fractionation of sediments and total phosphorus (TP) of overlying water after 7 days. The total amount of inorganic phosphorus of YS2 site was higher than YS1 site. Al-P and Fe-P were major constituents of inorganic phosphorus. During the incubation, Al-P, Fe-P and Ca-P were increased and Red-P was decreased at both sites. YS1 site showed increased TP concentration of overlying water, however, YS2 had opposite trend during the incubation. Counting on the particle size distribution of YS1 and YS2, particle size distribution is major factor to control the TP concentration of overlying water. There were positive relationship between Fe-P and TP and negative relationship between Red-P. From the results, it is essential to continuously monitor the sediment phosphorus fraction in order to control the TP concentration of the water.

Trace Metals in Surface Sediments of Garolim Bay, Korea (가로림만 표층 퇴적물 내 미량금속 분포 특성)

  • PARK, KYOUNGKYU;CHOI, MANSIK;JOE, DONGJIN;JANG, DONGJUN;PARK, SOJUNG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.25 no.2
    • /
    • pp.9-25
    • /
    • 2020
  • In 2010 and 2015, total 77 surface sediment samples were collected to assess the anthropogenic effects of trace metals in surface sediments of Garolim Bay, and the physical characteristics (particle size and specific surface area) and geochemical components (major (Al, Ca, Fe, K, Ba) and trace metals (Mn, Cs, Cr, Co, Ni, Cu, Zn, Pb), organic carbon and calcium carbonate) were analyzed. Mean grain size of Garolim Bay surface sediments ranged from 0.51-5.58 Ø (mean 3.98 Ø) and increased from the inlet of bay to the inner bay, and from the waterway to the land. Most of the metal concentrations except for some elements showed the similar distribution to those of mean grain size and specific surface area. As the particle size decreased and the specific surface area increased, the metal concentration increased. In order to estimate the factors controlling the concentration of trace metals, factor analysis was performed, and three factors were extracted (92.7% of the total variation). Factor 1 accounted for 71.3% of the total variation, which was a grain size factor. Factor 2 accounted for 14.2% of the total variation, Factor 3 accounted for 7.2% of the total variance. Enrichment factor was calculated using the particle size corrected background concentration. Metals with a enrichment factor of 1.5 or higher and the number of samples were 4 for Cr (St. 1, 16, 27, 39) and 1 for Pb (St. 39), but there were little differences in the concentrations of 1M HCl leached metals for these metals. The percentage of 1M HCl leached fraction to total metal concentration decreased in the order of Pb~Co>Cu>Zn~Mn>Ni>Cr. Comparing this value with contaminated and clean sediments in other coastal areas, the percentages for each metal were similar regardless of the trace metal levels in all regions. This fact might be resulted from the reaction between the 1M HCl solution and the different sediment constituents, indicating that there is a limit to apply this percentage of leached metal to the estimation of the contamination extent.

A Study on Treatment of CSOs by Vortex Separator and Continuous Fiber-Filter System (Vortex separator와 연속식 섬유사여과를 이용한 CSOs 처리연구)

  • Lee, Bum-Joon;Na, Ji-Hoon;Kim, Jin-Sung;Joo, Jae-Young;Bae, Yoon-Sun;Jung, In-Ho;Park, Chul-Hwi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.443-451
    • /
    • 2010
  • This study was conducted to confirm the CSOs characteristics, and to estimate treatment efficiency of CSO treatment process. Flowrate was average $53,500m^3$/d, maximum $58,100m^3$/d during dry season, but after rain-fall, the flowrate was increased more than twice that of the dry season. And, water pollution concentrations, such as $COD_{Cr}$, SS, $BOD_5$, TN and TP of after rain-fall, were also increased. Thus, for more efficient treatment of pollutants during rainy season, The vortex separator and continuous fiber filter devices were used. From the results on particle range, removal efficiency of particle was 99.7% at the particle size range of $40{\sim}100{\mu}m$ but decreased as 55-80% at the below $40{\mu}m$. The removal efficiencies of $COD_{Cr}$, SS, TN and TP were approx. 70, 60, 70 and 50, respectively during the dry season and approx. 50, 50, 8 and 18% during the rainy season. Also, when compared with the primary sediment basin, $COD_{Cr}$, SS, TN and TP removal efficiencies were high. especially, at the case of TN and TP, TN was more removed than TP because of higher conversion factor value. But we needed more study for the injection of a coagulants to get more stable treatment efficiency for soluble pollutants. Consequently, This process can be used for CSOs treatment as well as replace the primary sedimentation basin during the dry season.

Physico-Chemical Characteristics of Sediment in Sedimentation Tank of Infiltration Trench and Filtration System (비점오염저감시설인 침투도랑과 여과형 시설내 침강지 퇴적의 물리화학적 특성 분석)

  • Lee, Soyoung;Lee, Eun-Ju;Kim, Chulmin;Maniquiz, M.C.;Son, Youngkyu;Khim, Jeehyeong;Kim, Lee-Hyung
    • Journal of Wetlands Research
    • /
    • v.9 no.3
    • /
    • pp.35-42
    • /
    • 2007
  • The paved areas such as parking lots and roads are stormwater intensive landuses since they are impervious and have high pollutant mass emissions from vehicular activity. Vehicle emissions include different pollutants such as heavy metals, oil and grease, particulates from sources such as fuels, brake pad wear and tire wear. Especially, the released heavy metals can be easily absorbed on the surface area of small particulate materials because of its ionic strength. Therefore, by constructing the sedimental tank in structural BMPs as a pre-treatment facility, the particles and heavy metals both can be removed from the runoff at an instant. To understand the physico-chemical characteristics of sediments from sedimentation tank, one-year study at an infiltration trench and filtration system was conducted to quantify the metal mass absorbed on sediments with various particle sizes. The structural BMPs for this study are located in Yongin City, Kyunggido. The research results show that Cu, Zn and Pb are dominant metal compounds in the sediments. Also the metal concentrations are highest at the ranges of $425-850{\mu}m$ particle sizes. The results will provide the basic physico-chemical information of sediments to treat it as solid wastes and to determine the design criteria of sedimentation tank in structural BMPs.

  • PDF

Assessment of Particle Size Distribution and Pollution Impact of Heavy metalsin Road-deposited Sediments(RDS) from Shihwa Industrial Complex (시화산업단지 도로축적퇴적물의 입도분포 및 중금속 오염영향 평가)

  • Lee, Jihyun;Jeong, Hyeryeong;Ra, Kongtae;Choi, Jin Young
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.1
    • /
    • pp.8-25
    • /
    • 2020
  • Industrialization has increased the production of road-deposited sediments (RDS) and the level of heavy metals in those RDS, which can have a significant impact on the surrounding aquatic environments through non-point pollution. Although the relationship between contamination characteristics and particle size of RDS is important for pollution control, there is very little information on this. In this study, we investigated the characteristics of grain size distribution and heavy metal concentrations in the road-deposited sediments (RDS) collected from 25 stations in Shihwa Industrial Complex. The environmental impact of RDS with particle size is also studied. Igeo, the contamination assessment index of each metal concentration, represents the RDS from Shihwa Industrial Complex are very highly polluted with Cu, Zn, Pb and Sb, and the levels of those metals were 633~3605, 130~1483, 120~1997, 5.5~50 mg/kg, respectively. The concentrations of heavy metals in RDS increased with the decrease in particle size. The particle size fraction below 250 ㎛ was very dominant with mass and contamination loads, 78.6 and 70.4%, respectively. Particles less than 125 ㎛ of RDS were highly contaminated and toxic to benthic organisms in rivers. RDS particles larger than 250 ㎛ and smaller than 250 ㎛ were contaminated by the surrounding industrial facility and vehicle activities, respectively. As a result of this study, the clean-up of fine particles of RDS, smaller than 125-250 ㎛, is very important for the control and reduction of non-point pollution to nearby water in Shihwa Industrial Complex.

Burial Age and Flooding-origin Characteristics of Coastal Deposits at Gwangseungri, Gochanggun, Korea (고창군 광승리 연안 퇴적층의 퇴적 시기와 범람 기원 특성)

  • Kim, Jong Yeon;Yang, Dong Yoon;Shin, Won Jeong
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.222-235
    • /
    • 2015
  • Samples were collected from both places including the coastal area within the height of 5 m above the mean sea level (msl) (DH) and the top of the coastal terrace of 10-15 m msl (KS) high in Gwangseungri, Gochanggun, Korea. To find the origin of the deposit in the coastal area, granulometric analysis and geochemical analysis were performed. The result showed that the DH samples were originated from the reddish soils overlaying weathered bedrock which presented gradual change of chemical composition from the bottom toward the top. Clay minerals were found from the DH samples. These results concluded that the DH samples were found as in-situ weathered materials. The KS samples were originated from the soil layer covering gravel layer at the foot slope of the hill along the coast. The KS samples contained different chemical compositions from the DH. It is inferred that some of this layer was disturbed or experienced the influx of foreign material. The particle size of the KS samples was different from those found on the beach. The particle size of lower parts of KS site was finer than that on the beach, but the particle size of middle part of the site was coarser than that on the beach. The sorting of the KS site was poorer than that on the beach. Thus, it is inferred that some parts of the layer were formed by short-lived high energy event rather than sustained and continuous action of tidal currents and/or waves. Analysis using an optically stimulated luminescence (OSL) method showed that the burial age of samples from KS site were found 0.65-0.71 ka. Though the characteristics of the sediment layer and forming event in this area should be further studied, it can be inferred that this sedimentary layer formed by coastal flooding with storm.

A Study on the Optimal Phosphorus Recovery Conditions from Sewage Sludge Ash by pH Control and Reuse of Extracts (하수슬러지 소각재 추출액의 pH 조절 및 재사용에 따른 최적의 인(P) 회수 조건 산정 연구)

  • Liu, Qi;Lim, Sung Hyun;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.28 no.3
    • /
    • pp.15-26
    • /
    • 2020
  • To recover phosphorus from incinerated sewage sludge ash(ISSA), ISSA were extracted with sulfuric acid solution, and the optimal phosphorus recovery conditions were experimented by comparing the recovered phosphorus contents and heavy metals by raising pH. Also the phosphorus recovery efficiency was compared when acid extract was reused or classified by particle size of ISSA. The optimal conditions for recovering phosphorus from ISSA were 1N sulfuric acid solution with an L/S ratio of 10, and an extraction time of 30 minutes. Considering the addition of alkali substances and the content of heavy metals in the recovered sediment, it is concluded to recover phosphorus under pH 5. Reuse of the ISSA extract increased the recovery rate of phosphorus by 14~21% depending on the reuse rate (100 and 50%), but it also increased zinc contents to 33 and 21%, and copper contents to 35 and 20%, respectively. The experiment of ISSA divided into four sections by particle size showed that there was no distinct advantage of phosphorous recovery by classification of certain particle size of ISSA. The removal of heavy metals from extracts through EDTA and cation exchange resin showed no definite effect.

Prediction of Beach Profile Change Using Machine Learning Technique (머신러닝을 이용한 해빈단면 변화 예측)

  • Shim, Kyu Tae;Cho, Byung Sun;Kim, Kyu Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.639-650
    • /
    • 2022
  • In areas where large-scale sediment transport occurs, it is important to apply appropriate countermeasure method because the phenomenon tends to accelerate by time duration. Among the various countermeasure methods applied so far, beach nourishment needs to be reviewed as an erosion prevention measure because the erosion pattern is mitigated and environmentally friendly depending on the particle size. In the case of beach nourishment. a detailed review is required to determine the size, range, etc., of an appropriate particle diameter. In this study, we investigated the characteristics of the related topographic change using the change in the particle size of nourishment materials, the application of partial area, and the condition under the coexistence of waves and wind as variables because those factors are hard to be analyzed and interpreted within results and limitation of that the existing numerical models are not able to calculate and result out so that it is required that phenomenon or efforts are reviewed at the same time through physical model experiments, field monitoring and etc. So we attempt to reproduce the tendency of beach erosion and deposition and predict possible phenomena in the future using machine learning techniques for phenomena that it is not able to be interpreted by numerical models. we used the hydraulic experiment results for the training data, and the accuracy of the prediction results according to the change in the training method was simultaneously analyzed. As a result of the study it was found that topographic changes using machine learning tended to be similar to those of previous studies in short-term predictions, but we also found differences in the formation of scour and sandbars.

Distribution of natural radionuclide in the Geum river sediment (금강수계 퇴적물 중 천연 방사성핵종 분포 조사)

  • Seol, Bitna;Cho, Yoonhae;Min, Kyungok;Kim, Wansuk;Oh, Dayeon;Kil, Gibeom;Yang, Yunmo;Lee, Junbae;Kim, Byungik;Cheon, Seok
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.262-269
    • /
    • 2017
  • The concentration of natural radioactivity in the sediment of the Geum River was investigated. The river and lake sediment samples were collected at 23 points during September to November, 2015 and March to April, 2015, respectively. The gamma-rays emitted from the $^{226}Ra$ and $^{232}Th$ decay series and $^{40}K$ were measured with a high purity germanium (HPGe) gamma detector. The average radioactivity concentrations of the $^{226}Ra$, $^{232}Th$ decay series and $^{40}K$ for the river sediment was found to be $15.6{\pm}0.6$, $33.8{\pm}1.2$, $789.8{\pm}26.0Bq/kg$, respectively, while for the lake sediment, the concentrations were $17.1{\pm}0.5$, $37.8{\pm}1.1$, $269.4{\pm}9.6Bq/kg$, respectively. Spearman's correlation was conducted to compare the radioactivity concentration and properties of the sediment. The radioactivity concentration of the $^{232}Th$ decay series showed a negative correlation with the particle size of the sediment, and was measured to be higher than the $^{226}Ra$ decay series according to mobility of the radionuclides. The radioactivity concentration of $^{40}K$ showed a negative correlation with organic matter content. The concentration of $^{40}K$ in the lake sediment was lower than that in the river sediment.

A Study on the Characteristics and Burial Ages of Sediment Deposits at Jiduri, Daecheong Island (대청도 지두리 해안의 모래 퇴적층의 특성과 매몰연대에 대한 연구)

  • Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2018
  • The characteristics and burial ages of sand sediments on the Jiduri coast in Daechung-myeon, Ongjin-gun, Incheon were investigated. Daecheong Island is the area where the characteristics of the rocky coast and sand coast are shown. Various studies have been conducted on the Okjukdong sand dune that appears in the north of the island. However, there has been no study on the sandy sedimentary topography of the Jiduri and Moraewul area in the south. The sandy sedimentary terrain of Jiduri is divided into sandy beaches, sand dunes and sand deposits along the slope including climbing dune. Overall, the depth of sandy sediments in Jiduri is not deep. The characteristics of sandy sediments and burial ages were investigated at an elevation of about 23 m above sea level at the back of Jiduli Beach and 46 m above sea level at the ridge line between Jiduri and Moraewol. From the Jiduri coast to the hillside behind, the average grain size decreases and the sorting becomes better as it moves from the intertidal zone to the beach and the foredune. This indicates the selective sand transport by the wind and can be judged by the terrain formed under the current sedimentation environment. The average grain size at the upper part of the section of JD-1 (elevation of about 23m MSL) was $1.6918{\varphi}$ of medium sand. The sorting was $0.4584{\varphi}$, skewness was -1.0491 and kurtosis was -1.2411, respectively. Particularly, the average particle size of the crosssection issomewhat uniform, but the color of the constituent material changes from brown to black. In the case of JD-2 (about 46 m MSL), the mean grain size of the section was $1.7943{\varphi}$, the sorting was 0.4931, the skewness was -1.1163, and the kurtosis was 1.2133. On the other hand, the brown and black layers of JD-1 exhibited a burial age of $0.1{\pm}0.0ka$ and the JD-2 had a burial age of $0.7{\pm}0.0ka$.