• Title/Summary/Keyword: Sediment evaluation

Search Result 260, Processing Time 0.024 seconds

Application of Indigenous Benthic Amphipods as Sediment Toxicity Testing Organisms

  • Lee, Jung-Suk;Lee, Kyu-Tae;Kim, Dong-Hoon;Kim, Chao-Kook;Lee, Jong-Hyeon;Park, Kun-Ho
    • Ocean Science Journal
    • /
    • v.40 no.1
    • /
    • pp.17-24
    • /
    • 2005
  • A series of experiments were conducted to develop standard test organisms and test protocols for measuring sediment toxicity using candidate amphipods such as Mandibulophoxus mai, Monocorophium acherusicum, Haustorioides indivisus, and Haustorioides koreanus, which are indigenous to Korea. The relevant association of test species with sediment substrates was one of the important factors in sediment bioassay. The indigenous amphipods M mai and M. acherusicum were well associated with test sediments when they were exposed to various sediment substrates from sand to mud. The tolerant limits to various physico-chemical factors affecting bioassay results such as temperature, salinity and ammonia, as well as sensitivities to reference toxicant and contaminated sediments, were investigated using M. mai and M. acherusicum in the present study. These amphipods were tolerant to relatively wide ranges of salinity $(10{\sim}30\;psu)$ and ammonia (<50 ppm), and displayed relevant sensitivity to temperature as well. They are more sensitive to Cd, the reference toxicant, when compared to the standard test species used in other countries. Field-sediment toxicity tests revealed that M. mai would be more sensitive to sediment-associated pollutants than M. acherusicum, while the sensitivity of M. acherusicum was comparable to that of Leptocheirus plumulosus, which has been used as a standard test species in the United States of America. Overall results of this first attempt to develop an amphipod sediment toxicity test protocol in Korea indicated that M. mai and M. acherusicum would be applicable in the toxicity assessment of contaminated sediments, following the further evaluation encompassing various ecological and toxicological studies in addition to test method standardization.

Potential and Future Directions of Effect Assessment of Polluted Sediment Using Sediment Elutriates: Effects on Growth and Molecular Biomarkers on Marine Copepod (퇴적물 용출수를 이용한 오염 퇴적물의 생물영향평가 가능성과 방향: 요각류 유생의 성장 및 분자생체지표의 활용)

  • Won, Eun Ji;Gang, Yehui
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • Several bioassays have been performed for assessment of the impact of polluted sediments. The direct exposure method using sediments is limited by difficulty controlling feeding and its effects on organisms. Furthermore, only macro-organisms and benthic organisms are used. To evaluate the potential application of sediment elutriate as a complementary strategy for impact assessment, copepods, small organisms with a short life cycle, were exposed to sediment elutriates, and several end-points were measured. As a result, sediment elutriates prepared from polluted sites caused growth retardation in marine copepods. In terms of molecular biomarkers, antioxidant-related and chaperone protein gene expression levels were increased in a dose- and time-dependent manner. Thus, we suggest that sediment elutriate tests can provide an effective alternative for toxicity assessment using whole sediment samples. Further studies are required to obtain sufficient data for future applications.

Investigation of Reducing Characteristics for the Spreading of Dredging Soil and the Diffusion of Contaminant by Silt Protector Curtain through Three Dimensional Numerical Model Experiment (3차원 수치모형실험을 통한 오탁방지막의 오염물질 및 준설토 확산 저감특성 조사)

  • Hong, Nam-Seeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.78-85
    • /
    • 2010
  • This study investigates reducing characteristics for the spreading of dredged soil and the diffusion of contaminant by silt protector curtain through three dimensional numerical experiment. The numerical medel is modified by combining the sediment transport characteristics for cohesive sediment into the previously developed model. Several numerical experiments have been given in order to investigate the reducing effect of silt protector using two dimensional numerical channel model under various parameters such as upstream flow velocity, depth of silt curtain and the position of dumped materials. Through the evaluation of several simulation results, we knew that the careful design has to be given in the determination of depth and position of silt protector.

Heavy metals contamination in coastal sediments by the large discharge from wastewater treatment plant (하수종말 처리장 처리수의 해양 방류와 퇴적물의 중금속 오염)

  • Kwon Young Tack;Lee Chan Won
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.1 no.1
    • /
    • pp.83-92
    • /
    • 1998
  • Heavy metals concentration in superficial sediment of effluent discharging area was rapidly increased by annual loadings of Zn(8.465 Kg), Ni(3,291 Kg), Cu(1,636 Kg) and Pb(1,250 Kg) from sewage effluent of 63×10/sup 6/ m³/yr. In a consequent result, specially the concentrations of Zn and Cu in the sediment were three times higher than preindustrial reference values. The evaluation by multiple ecological risk indices showed that heavy metals contamination in sediment of discharging area was 'heavily Polluted level' by sediment quality criteria and increased 2.6 times by the degree of contamination. It was also judged that toxicological effects of sediment receiving the primary effluent would occasionally (16~47%) occur by guidelines for adverse biological effect.

  • PDF

Evaluation of Coastal Sediment Budget on East Coast Maeongbang Beach by Wave Changes (파랑 변화에 따른 동해안 맹방 해수욕장 연안 표사수지 파악)

  • Kim, Gweon-Su;Ryu, Ha-Sang;Kim, Sang-Hoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.564-572
    • /
    • 2019
  • Numerical simulation of the sediment by the Delft3d model was conducted to examine the changes in the sediment budget transport caused by long-term wave changes at the Maengbang beach. Representative waves were generated with input reduction tools using NOAA NCEP wave data for about 40 years, i.e., from January 1979 to May 2019. To determine the adequacy of the model, wave and depth changes were compared and verified using wave and depth data observed for about 23 months beginning in March 2017. As a result of the error analysis, the bias was 0.05 and the root mean square error was 0.23, which indicated that the numerical wave results were satisfactory. Also, the observed change in depth and numerical result were similar. In addition, to examine the effect due to long-term changes in the waves, the NOAA wave data classified into each of the representative wave grades, and then the annual trend of the representative wave was analyzed. After deciding the weight of each wave class considering the changed wave environment in 2100, the amounts of sedimentation, deposition, and the sediment transport budget were reviewed for the same period. The results indicated that the sedimentation pattern did not change significantly compared to the current state, and the amount of the local sediment budget shown in the present state was slightly less. And there has been a local increase in the number of sediment budget transport, but there is no significant difference in the net and amount of sediment movements.

Analysis and Evaluation of Lake Sediment

  • Hwang, Jong-Yeon;Han, Eui-Jung;Kim, Tae-Keun;Yu, Soon-Ju;Yoon, Young-Sam;Chung, Yang-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.7 no.2
    • /
    • pp.5-14
    • /
    • 1998
  • This study was performed to estimate interrelation between characteristics of sediment and nutrient releare from sediment in Dae-cheong lake. For the investigations, sediments were sampled in June and October 1997 at fish farms, embayment, and the main stream of Dae-cheong lake. Items for investigation are as follows; water content, weight loss on ignition(IG), porosity of sediment, Total Kjeldahl Nitrogen(TKN), content of element(H, N, C), nutrient release rate. Water content and porosity were measured to conjecture the physical trait and grain size. And weight loss on ignition was measured to determine the contents of organic substance. For the determination of nutrient release rate, $PO_4-P$ and $NH_4-N$ concentration of interstitial water and overlying water were measured. Release rate of nutrients which has direct influenced upon the water quality were 0.05-8.63mg-$P/m^2{\cdot}day$ and 4.99-36.56mg-$N/m^2{\cdot}day$. And it was found that release rate was measured higher in the 1st sampling than in the 2nd sampling. And for determination of the humus level of sediment, carbon and nitrogen content were measured by using elemental analyzer. Generally, C/N ratio is used to determine humus level of lake sediment. As a result of elemental analysis, C/N ratio was determined in the range of 7.64~11.55, so humus level of Dae-cheong lake sediment was estimated from mesohumic state to oligohumic state.

  • PDF

Evaluation of contamination for the Andong-dam sediment and a magnetic separation for reducing the contamination level

  • Hong, H.P.;Kwon, H.W.;Kim, J.J.;Ha, D.W.;Kim, Young-Hun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.31-35
    • /
    • 2019
  • Andong-dam was built up in 1967 and it is one of the biggest dams in Korea. Previous studies showed that the sediments are highly contaminated with heavy metals such as arsenic, cadmium, and lead. Many research projects are going on to find out the source of the contamination, to evaluate the toxicities to ecosystem, to estimate the volume of sediment to be treated and to find out a good remediation method. Reports show that the sediment is highly contaminated and the main contamination source is supposed to be abandoned mines and a zinc refinery located upper stream of the river. A magnetic separation has been tested as a treatment method for the dredged sediment. Lab scale test showed that the magnetically captured portion is about 10% in weight but the contamination of heavy metal is much higher than the contamination of the passed portion. This indicates that a magnetic separation could be applied for the purpose of reduction of sediment to be treated and for increasing the volume of low toxic sediments which can be dumped as general waste. A magnetic separation using a HGMS has been tested for the sediment with variable magnetic field and the results showed the higher magnetic field increase the captured portion but the concentrating effect of heavy metal was weakened. Further study is needed to establish a useful technology and optimization between decontamination and reduction of sediment volume.

Trends in Evaluation Techniques for Leaching of Heavy Metals and Nutrients according to Sediment Resuspension in Rivers and Lakes (하천 및 호소 내 퇴적물 재부유에 따른 중금속 및 영양염류 용출량 평가기법 동향)

  • Sang-Gyu Yoon;Seoyeon Han;Haewook Kim;Ihn-Sil Kwak;Jinsung An
    • Journal of Soil and Groundwater Environment
    • /
    • v.28 no.5
    • /
    • pp.1-11
    • /
    • 2023
  • The phenomenon of sediment resuspension in rivers and lakes causes contaminants (heavy metals and nutrients) accumulated in the sediment to leach into the overlying water. As a result, it can lead to changes in toxic effects and eutrophication in the aquatic ecosystem. In this regard, it is important to quantitatively determine the amount of contaminants leached during sediment resuspension. In this study, methods for assessing the amount of released contaminants and the types of contaminants potentially released due to sediment resuspension were studied and summarized. Methods for assessing leaching can be divided into three groups based on the principle of causing resuspension: (i) the oscillating grid chamber method, (ii) the mechanical stirrer method, and (iii) the shaker method. It was confirmed that the types of contaminants that can potentially be released include heavy metals bound to sulfides, as well as exchangeable and labile forms of heavy metals and nutrients. To effectively manage stable aquatic ecosystems in the future, a simplified leaching test method is needed to assess in advance the risks (i.e., changes in toxic effects and eutrophication) that sediment resuspension may pose to aquatic ecosystems.

Development of Sediment Toxicity Test Protocols using Korean Indigenous Marine Benthic Amphipods (국내산 저서 단각류를 이용한 퇴적물 독성시험법 개발에 관한 연구)

  • Lee, Jung-Suk;Lee, Seung-Min;Park, Gyung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.2
    • /
    • pp.147-155
    • /
    • 2008
  • A series of experiments were conducted to find standard test organisms and to develop test protocols for sediment toxicity tests using indigenous amphipods inhabited in Korean coastal environments. The indigenous amphipods Mandibulophoxus mai and Monocorophium acherusicum were well associated with various sediment substrates from sand to mud. The tolerance limits to various physico-chemical factors affecting bioassay results such as temperature, salinity and total ammonium as well as the sensitivities to contaminants in water and sediments were investigated using M. mai and M. acherusicum in the present study. These amphipods were tolerable to the adequate ranges of salinity ($10{\sim}30\;psu$), temperature ($10{\sim}25^{\circ}C$) and ammonia (<50 ppm). They have relevant sensitivities to the reference toxicants, dissolved cadmium as well as other metals and organic pollutants, when compared to the standard test species used in other countries. Field-sediment toxicity tests revealed that M. mai would be more sensitive to sediment-associated pollutants than M. acherusicum, while the sensitivity of M. acherusicum was comparable to those of other sediment test species in other countries. Overall results of this first attempt to develop an amphipod sediment toxicity test protocol in Korea indicated that M. mai and M. acherusicum should be applicable in the toxicity assessment of contaminated sediments, following the further evaluation encompassing various ecological and toxicological evaluation and the standardization of test method.

Toxicity Monitoring of River Sediments in the Geum River Basin using Daphnia magna and Moina macrocopa (Daphnia magna와 Moina macrocopa를 이용한 금강수계 하천퇴적물 생태독성 모니터링)

  • Cho, Hyeyoon;Yoo, Jisu;Han, Youngseok;Han, Taejun;Kim, Sanghun;Jung, Jinho
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.6
    • /
    • pp.1000-1007
    • /
    • 2010
  • In this study, toxicity monitoring of sediments collected from 25 stations in the Geum river basin was conducted using Daphnia magna and Moina macrocopa. According to the results of acute toxicity tests (immobilization and mortality) of organic extracts of semdiments, Miho stream showed much less toxicity than Gap and Nonsan streams. In particular, significant toxicity was observed in both species for St.15 and St.16 sediment samples that passed through Deajeon city as a branch of Gap stream. For Nonsan stream, St.23 sediment showed high toxicity toward M. macrocopa. This site seemed to be affected by upper agricultural industrial complex. Additionally, M. macrocopa showed a higher sensitivity than D. magna for organic extracts of sediments. In the case of toxicity tests using sediment pore water and aqueous extracts, only pore water of St.27 sediment was toxic against D. magna. Toxicity identification evaluation showed that hydrogen sulfide was likely a major toxicant in the pore water.