• Title/Summary/Keyword: Sediment Yield

Search Result 202, Processing Time 0.029 seconds

Rheological Characteristics and Debris Flow Simulation of Waste Materials (광산폐석의 유변학적 특성과 토석류 흐름특성 분석)

  • Jeong, Sueng Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.4
    • /
    • pp.1227-1240
    • /
    • 2014
  • Abandoned mines often cause environmental problems, such as alteration of landscape, metal contamination, and landslides due to a heavy rainfall. Geotechnical and rheological tests were performed on waste materials corrected from Imgi waste rock dump, located in Busan Metropolitan City. Debris flow mobility was examined with the help of 1-D BING model which was often simulated in both subaerial and subaqueous environments. To determine flow curve, we used a vane-penetrated rheometer. The shear stress (${\tau}$)-shear rate (${\dot{\gamma}}$) and viscosity(${\eta}$)-shear rate (${\dot{\gamma}}$) relationships were plotted using a shear stress control mode. Well-known rheological models, such as Bingham, bilinear, Herschel-Bulkley, Power-law, and Papanastasiou concepts, were compared to the rheological data. From the test results, we found that the tested waste materials exhibited a typical shear shinning behavior in ${\tau}$-${\dot{\gamma}}$ and and ${\eta}$-${\dot{\gamma}}$ plots, but the Bingham behavior is often observed when the water contents increased. The test results show that experimental data are in good agreement with rheological models in the post-failure stage during shearing. Based on the rheological properties (i.e., Bingham yield stress and viscosity as a function of the volumetric concentration of sediment) of waste materials, initial flowing shape (5 m, 10 m, and 15 m) and yield stress (100 Pa, 200 Pa, 300 Pa, and 500 Pa) were input to simulate the debris flow motion. As a result, the runout distance and front velocity of debris flow are in inverse propositional to yield stress. In particular, when the yield stress is less than 500 Pa, most of failed masses can flow into the stream, resulting in a water contamination.

Establishment of Priority Forest Areas Based on Hydrological Ecosystem Services in Northern Vietnam (수문학적 생태계 서비스를 고려한 북부베트남의 우선보전산림 설정)

  • Kong, Inhye;Lee, Dongkun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.5
    • /
    • pp.29-41
    • /
    • 2014
  • Ecosystem services provide various benefits to human beings, but are considered to be free of cost. To protect ecosystems in an economically sustainable way, several developing countries have adopted a policy known as the Payment for Ecosystem Services (PES) that compensates upstream services with monetary incentives collected from service users. Vietnam is one of the countries that have enacted a nationwide PES policy. However, the policy in Vietnam requires further development in order to evaluate the spatial priority zones based on the quantification of ecosystem services. To obtain a recent and high-quality land cover map, we first classified the land cover in the Da River basin, in northern Vietnam, using Landsat dataset. We then applied a water balance theory and an USLE equation to assess hydrological ecosystem services concerning water supply and sediment retention. Following the assessment, we identified the priority areas for hydrological ecosystem services exclusively for forest environments. We found that the quantity and distribution of services from forests varied, due to the topography, climate, and land cover. According to a quantile distribution, Mt. Phu Luong, Mt. Fansipan, and Hoang Lien National Park were evaluated as high service areas in terms of both water yield and sediment retention. As a result, this assessment method can help construct spatial priority zones concerning ecosystem service distribution, and can also contribute to benefit sharing by indicating which forest and landowners require compensation.

Comparison of Annual Soil Loss using USLE and Hourly Soil Erosion Evaluation System (USLE모형과 시강우를 고려한 토양유실 평가 시스템을 이용한 연간 토양유실량 비교 분석)

  • Kum, Dong-Hyuk;Ryu, Ji-Chul;Kang, Hyun-Woo;Jang, Chun-Hwa;Shin, Min-Hwan;Shin, Dong-Shuk;Choi, Joong-Dae;Lim, Kyoung-Jae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.991-997
    • /
    • 2011
  • Soil erosion and sediment has been known as one of pollutants causing water quality degradation in water bodies. With global warming issues worldwide, various soil erosion studies have been performed. Although on-site monitoring of sediment loss would be an ideal method to evaluate soil erosion condition, modeling approaches have been utilized to estimate soil erosion and to evaluate various best management practices on soil erosion reduction. Although the USLE has been used in soil erosion estimation for the last 40 years, the USLE model has limitations in estimating event-based soil erosion reflecting rainfall intensity and rainfall duration for long-term period. Thus, the calibrated model, capable of simulating soil erosion using hourly rainfall data, was utilized in this study to evaluate the effects of rainfall amount and rainfall intensity on soil erosion. It was found that USLE soil erosion value is $3.06ton\;ha^{-1}\;yr^{-1}$, while soil erosion values from 2006~2010 were $2.469ton\;ha^{-1}\;yr^{-1}$, $0.882ton\;ha^{-1}\;yr^{-1}$, $1.489ton\;ha^{-1}\;yr^{-1}$, $2.158ton\;ha^{-1}\;yr^{-1}$, $1.602ton\;ha^{-1}\;yr^{-1}$, respectively. Especially, soil erosion from single storm event for 2008-2010 would be responsible for 30% or more of annual soil loss. As shown in this study, hourly soil erosion estimation system would provide more detailed output from the study area. In addition, the effects of rainfall intensity on soil erosion could be evaluated with this system.

Isolation of a Novel Freshwater Agarolytic Cellvibrio sp. KY-YJ-3 and Characterization of Its Extracellular ${\beta}$-Agarase

  • Rhee, Young-Joon;Han, Cho-Rong;Kim, Won-Chan;Jun, Do-Youn;Rhee, In-Ku;Kim, Young-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.10
    • /
    • pp.1378-1385
    • /
    • 2010
  • A novel agarolytic bacterium, KY-YJ-3, producing extracellular agarase, was isolated from the freshwater sediment of the Sincheon River in Daegu, Korea. On the basis of Gram-staining data, morphology, and phylogenetic analysis of the 16S rDNA sequence, the isolate was identified as Cellvibrio sp. By ammonium sulfate precipitation followed by Toyopearl QAE-550C, Toyopearl HW-55F, and MonoQ column chromatographies, the extracellular agarase in the culture fluid could be purified 120.2-fold with a yield of 8.1%. The specific activity of the purified agarase was 84.2 U/mg. The molecular mass of the purified agarase was 70 kDa as determined by dodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The optimal temperature and pH of the purified agarase were $35^{\circ}C$ and pH 7.0, respectively. The purified agarase failed to hydrolyze the other polysaccharide substrates, including carboxymethyl-cellulose, dextran, soluble starch, pectin, and polygalacturonic acid. Kinetic analysis of the agarose hydrolysis catalyzed by the purified agarase using thin-layer chromatography showed that the main products were neoagarobiose, neoagarotetraose, and neoagarohexaose. These results demonstrated that the newly isolated freshwater agarolytic bacterium KY-YJ-3 was a Cellvibrio sp., and could produce an extracellular ${\beta}$-agarase, which hydrolyzed agarose to yield neoagarobiose, neoagarotetraose, and neoagarohexaose as the main products.

A New Cowpea Cultivar 'Jang-alchan' with Mechanization Harvesting and High Yield

  • JinSil Choi;Dong-Kwan Kim;Min-jung Seo;BeomKyu Kang
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.193-193
    • /
    • 2022
  • Cowpea(Vigna unguiculata L. Walp) has a low fat and protein content and a relatively high starch content, so it is mainly used in various ways for song-pyeon sediment, rice-cake paste, and porridge. In Yeonggwang-gun, Jeollanam-do, cowpea for seed production is being cultivated for the localization of raw material for Rice cake with ramie leave. A cowpea variety 'Jang-Alchan' was improved from the cross between IT145373 and IT145391 at the JARES in 2019. 'Jang-alchan' has an erect plant with an intermediate plant habit, light purple-colored corolla, and heart-shaped leaflets. 'Jang-alchan' has an orange-yellow seed seed-surface of faint luster, and brown and straight pods when matured. The stem length of 'Jang-alchan' was 48cm, 9cm longer than that of the control cultivar 'Okdang' and the 100-seed weight was 14.1g. The weight ratio of the seed coat for the entire seed was 11.2%, which was 0.2%p lower than that of the control cultivar. Field resistance of 'Jang-alchan' to leaf and systemic diseases was similar to that of the control cultivar. Is field resistance of 'Jang-alchan' to lodging was slightly lower than that of the control cultivar. The average yield of 'Jang-alchan' was 1.85ton per hectare, which was 14% higher than that of the control cultivar 'Okdang', 'Jang-Alchan' does not require the installation of an espalier-net and is taller than the existing supplied 'Okdang', so it can be harvested by combine harvesting. In addition, it is expected to contribute to the localization of raw material grains for regional specialties as it can be cultivated over a large area.

  • PDF

Sustainable Yield of Groundwater Resources of the Cheju Island (제주도 지하수자원의 최적 개발가능량)

  • Hahn, Jeong-Sang;Hahn, Kyu-Sang;Kim, Chang-Kil;Kim, Nam-Jong;Hahn, Chan
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.1 no.1
    • /
    • pp.33-50
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic log and aquifer test were analyzed to determine hydrogeologic characteristics of the Cheju island. The groundwater. of the Cheju island is occurred in unconsolidated pyroclastic deposits and crinker interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types under unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300㎡/day and 0.12 respectively, The total storage of groundwater is estimated about 44 billion cubic meters. Average annual precipitation is about 3,390 million ㎥ among which average recharge is estimated for 1,494 million ㎥ being equivalent 44.1% of total annual precipitation with 638 million ㎥ of runoff and 1,256 million ㎥ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million ㎥(41% of annual recharge)and rest is discharging into the sea. The geologic logs of recently drilled thermal water wells indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy silt derived from mainly volcanic ashes at the 1st stage volcanic activity of the area is situated at the 120${\pm}$68m below sea level. Another low-permeable sedimentary rock called Seogipo-formation which is deemed younger than the former marine sediment is occured at the area covering north-west and western part of the Cheju island at the ${\pm}$70m below sea level. If these impermeable beds art distributed as a basal formation of fresh water zone of the Cheju island, the most of groundwater in the Cheju island will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

Evaluation of GIS-based Soil Erosion Amount with Turbid Water Data (탁수자료를 이용한 GIS 기반의 토사유실량 평가)

  • Lee, Geun-Sang;Cho, Gi-Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.12 no.4 s.31
    • /
    • pp.75-81
    • /
    • 2004
  • Because geological types and land cover conditions of Imha basin have a very weak characteristics to soil erosion, most soil particles (low into river and bring about high density turbidity in Imha reservoir when it rains a lot. This study used GIS-based RUSLE model and analyzed soil erosion to make basic data for the countermeasures of turbidity reduction in Imha reservoir. Total soil erosion amounts was evaluated as 5,782,829 ton/yr using rainfall data(2003) and especially Dongbu-basin was extracted as most source area or soil erosion among Imha sub-basin. Also it was evaluated that soil erosion amount by RUSLE model was suitable by applying turbidity survey data.

  • PDF

Study on the Fluctuation System of River Level Using GIS Data (GIS자료를 이용한 하천수위 예측시스템 구축)

  • Kang Sang-Hyeok;Choi Jong-In
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.229-237
    • /
    • 2004
  • Debris flow in the mountainous river gives rise to serious environmental and flooding problems. According to flood white book of Kangwon-do in 2002, over 30% of total of flooding victims are attributable to debris flow. But it has been neglected to build countermeasure to minimize victims due to lack of collected data and knowledge in field of the sediment yield of mountainous river. The study calculated hydraulic and hydrological fluctuation for rainfall condition using GIS data, after all we estimated the water surface of flood caused by bed fluctuation. These efforts will of for effective information for planning of river management.

  • PDF

Analysis of Rainfall-Sediment Yield-Runoff Prediction Uncertainty due to Propagation of Parameter Uncertainty (매개변수의 불확실성 전이에 따른 강우-유사-유출의 불확실성 분석)

  • Yu, Wan-Sik;Lee, Gi-Ha;Park, Chan-Hong;Lee, Bok-Hwan;Jung, Kwan-Sue
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.282-286
    • /
    • 2011
  • 토양침식 및 유사유출로 인한 피해를 예방하고 대응방안을 수립하기 위해서는 침식의 발생원인과 규모에 대한 정량적 평가가 필요하다. 이를 위해서는 지속적인 계측에 의한 토양침식량 산정이 가장 바람직하지만 실질적으로 유역규모의 지속적인 모니터링은 불가능하므로 유역의 수문/지형/지질학적 특성을 고려한 수치모형을 사용하여 토양침식량 및 유사유출량을 산정하는 것이 일반적이다. 이러한 수치모형을 이용한 수문모의의 경우 모형의 구조, 모델링에 사용되는 자료, 매개변수 등에 포함된 다양한 불확실성 요인에 의해 계산결과에 상당한 불확실성을 포함하고 있다. 본 연구에서는 매개변수의 불확실성 전이에 따른 수문모의결과의 불확실성의 정량적인 평가를 위해 서로 다른 두가지 수문량(유출량, 유사유출량)을 제공하는 강우-유사-유출 모형을 선택하고, 다중최적화기법인 MOSCEM-UA을 이용하여 매개변수 상호작용에 의한 Pareto 최적해 군 및 균형최적해를 산정하고, 이에 따른 수문예측결과의 불확실성을 평가하였다.

  • PDF