• Title/Summary/Keyword: Security diagnose

Search Result 63, Processing Time 0.027 seconds

A Review on Advanced Methodologies to Identify the Breast Cancer Classification using the Deep Learning Techniques

  • Bandaru, Satish Babu;Babu, G. Rama Mohan
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.420-426
    • /
    • 2022
  • Breast cancer is among the cancers that may be healed as the disease diagnosed at early times before it is distributed through all the areas of the body. The Automatic Analysis of Diagnostic Tests (AAT) is an automated assistance for physicians that can deliver reliable findings to analyze the critically endangered diseases. Deep learning, a family of machine learning methods, has grown at an astonishing pace in recent years. It is used to search and render diagnoses in fields from banking to medicine to machine learning. We attempt to create a deep learning algorithm that can reliably diagnose the breast cancer in the mammogram. We want the algorithm to identify it as cancer, or this image is not cancer, allowing use of a full testing dataset of either strong clinical annotations in training data or the cancer status only, in which a few images of either cancers or noncancer were annotated. Even with this technique, the photographs would be annotated with the condition; an optional portion of the annotated image will then act as the mark. The final stage of the suggested system doesn't need any based labels to be accessible during model training. Furthermore, the results of the review process suggest that deep learning approaches have surpassed the extent of the level of state-of-of-the-the-the-art in tumor identification, feature extraction, and classification. in these three ways, the paper explains why learning algorithms were applied: train the network from scratch, transplanting certain deep learning concepts and constraints into a network, and (another way) reducing the amount of parameters in the trained nets, are two functions that help expand the scope of the networks. Researchers in economically developing countries have applied deep learning imaging devices to cancer detection; on the other hand, cancer chances have gone through the roof in Africa. Convolutional Neural Network (CNN) is a sort of deep learning that can aid you with a variety of other activities, such as speech recognition, image recognition, and classification. To accomplish this goal in this article, we will use CNN to categorize and identify breast cancer photographs from the available databases from the US Centers for Disease Control and Prevention.

Proposals for GCI Indicators to Improve a National Cybersecurity Level (국가 사이버보안 수준 향상을 위한 GCI의 지표개선 방안)

  • Kim, Dae kyung;Lee, Ju hyeon;Kim, Ye young;Hyeon, Da eun;Oh, Heung-Ryong;Chin, Byoung moon;Youm, Heung Youl
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.2
    • /
    • pp.289-307
    • /
    • 2022
  • The Global Cybersecurity Index (GCI) developed by the International Telecommunication Union (ITU) is used to diagnose a country's cybersecurity development level and to strengthen its cybersecurity capabilities. This paper analyzes GCI and tries to suggest a way to strengthen its effectiveness. In addition, we analyze the GCI version 1~GCI version 4 evaluation index in advance, and examine the development plan through SWOT analysis. Through this, basic principles for GCI improvement and utilization will be established, and new indicators related to the GCI version 5 questionnaire will be discovered and suggested. This paper is expected to be used as basic data for GCI performance analysis and improvement plan. In addition, it is intended to contribute to enhance the effectiveness of GCI and the nation's cybersecurity capabilities by proposing more advanced proactive and reactive indicators to be applied to the future GCI evaluations. This paper is an improvement and development for the research result of [1].

A Detailed Review on Recognition of Plant Disease Using Intelligent Image Retrieval Techniques

  • Gulbir Singh;Kuldeep Kumar Yogi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.77-90
    • /
    • 2023
  • Today, crops face many characteristics/diseases. Insect damage is one of the main characteristics/diseases. Insecticides are not always effective because they can be toxic to some birds. It will also disrupt the natural food chain for animals. A common practice of plant scientists is to visually assess plant damage (leaves, stems) due to disease based on the percentage of disease. Plants suffer from various diseases at any stage of their development. For farmers and agricultural professionals, disease management is a critical issue that requires immediate attention. It requires urgent diagnosis and preventive measures to maintain quality and minimize losses. Many researchers have provided plant disease detection techniques to support rapid disease diagnosis. In this review paper, we mainly focus on artificial intelligence (AI) technology, image processing technology (IP), deep learning technology (DL), vector machine (SVM) technology, the network Convergent neuronal (CNN) content Detailed description of the identification of different types of diseases in tomato and potato plants based on image retrieval technology (CBIR). It also includes the various types of diseases that typically exist in tomato and potato. Content-based Image Retrieval (CBIR) technologies should be used as a supplementary tool to enhance search accuracy by encouraging you to access collections of extra knowledge so that it can be useful. CBIR systems mainly use colour, form, and texture as core features, such that they work on the first level of the lowest level. This is the most sophisticated methods used to diagnose diseases of tomato plants.

Intelligent System for the Prediction of Heart Diseases Using Machine Learning Algorithms with Anew Mixed Feature Creation (MFC) technique

  • Rawia Elarabi;Abdelrahman Elsharif Karrar;Murtada El-mukashfi El-taher
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.5
    • /
    • pp.148-162
    • /
    • 2023
  • Classification systems can significantly assist the medical sector by allowing for the precise and quick diagnosis of diseases. As a result, both doctors and patients will save time. A possible way for identifying risk variables is to use machine learning algorithms. Non-surgical technologies, such as machine learning, are trustworthy and effective in categorizing healthy and heart-disease patients, and they save time and effort. The goal of this study is to create a medical intelligent decision support system based on machine learning for the diagnosis of heart disease. We have used a mixed feature creation (MFC) technique to generate new features from the UCI Cleveland Cardiology dataset. We select the most suitable features by using Least Absolute Shrinkage and Selection Operator (LASSO), Recursive Feature Elimination with Random Forest feature selection (RFE-RF) and the best features of both LASSO RFE-RF (BLR) techniques. Cross-validated and grid-search methods are used to optimize the parameters of the estimator used in applying these algorithms. and classifier performance assessment metrics including classification accuracy, specificity, sensitivity, precision, and F1-Score, of each classification model, along with execution time and RMSE the results are presented independently for comparison. Our proposed work finds the best potential outcome across all available prediction models and improves the system's performance, allowing physicians to diagnose heart patients more accurately.

Autism Spectrum Disorder Detection in Children using the Efficacy of Machine Learning Approaches

  • Tariq Rafiq;Zafar Iqbal;Tahreem Saeed;Yawar Abbas Abid;Muneeb Tariq;Urooj Majeed;Akasha
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.179-186
    • /
    • 2023
  • For the future prosperity of any society, the sound growth of children is essential. Autism Spectrum Disorder (ASD) is a neurobehavioral disorder which has an impact on social interaction of autistic child and has an undesirable effect on his learning, speaking, and responding skills. These children have over or under sensitivity issues of touching, smelling, and hearing. Its symptoms usually appear in the child of 4- to 11-year-old but parents did not pay attention to it and could not detect it at early stages. The process to diagnose in recent time is clinical sessions that are very time consuming and expensive. To complement the conventional method, machine learning techniques are being used. In this way, it improves the required time and precision for diagnosis. We have applied TFLite model on image based dataset to predict the autism based on facial features of child. Afterwards, various machine learning techniques were trained that includes Logistic Regression, KNN, Gaussian Naïve Bayes, Random Forest and Multi-Layer Perceptron using Autism Spectrum Quotient (AQ) dataset to improve the accuracy of the ASD detection. On image based dataset, TFLite model shows 80% accuracy and based on AQ dataset, we have achieved 100% accuracy from Logistic Regression and MLP models.

A Review on Detection of COVID-19 Cases from Medical Images Using Machine Learning-Based Approach

  • Noof Al-dieef;Shabana Habib
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2024
  • Background: The COVID-19 pandemic (the form of coronaviruses) developed at the end of 2019 and spread rapidly to almost every corner of the world. It has infected around 25,334,339 of the world population by the end of September 1, 2020 [1] . It has been spreading ever since, and the peak specific to every country has been rising and falling and does not seem to be over yet. Currently, the conventional RT-PCR testing is required to detect COVID-19, but the alternative method for data archiving purposes is certainly another choice for public departments to make. Researchers are trying to use medical images such as X-ray and Computed Tomography (CT) to easily diagnose the virus with the aid of Artificial Intelligence (AI)-based software. Method: This review paper provides an investigation of a newly emerging machine-learning method used to detect COVID-19 from X-ray images instead of using other methods of tests performed by medical experts. The facilities of computer vision enable us to develop an automated model that has clinical abilities of early detection of the disease. We have explored the researchers' focus on the modalities, images of datasets for use by the machine learning methods, and output metrics used to test the research in this field. Finally, the paper concludes by referring to the key problems posed by identifying COVID-19 using machine learning and future work studies. Result: This review's findings can be useful for public and private sectors to utilize the X-ray images and deployment of resources before the pandemic can reach its peaks, enabling the healthcare system with cushion time to bear the impact of the unfavorable circumstances of the pandemic is sure to cause

Optimize KNN Algorithm for Cerebrospinal Fluid Cell Diseases

  • Soobia Saeed;Afnizanfaizal Abdullah;NZ Jhanjhi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Medical imaginings assume a important part in the analysis of tumors and cerebrospinal fluid (CSF) leak. Magnetic resonance imaging (MRI) is an image segmentation technology, which shows an angular sectional perspective of the body which provides convenience to medical specialists to examine the patients. The images generated by MRI are detailed, which enable medical specialists to identify affected areas to help them diagnose disease. MRI imaging is usually a basic part of diagnostic and treatment. In this research, we propose new techniques using the 4D-MRI image segmentation process to detect the brain tumor in the skull. We identify the issues related to the quality of cerebrum disease images or CSF leakage (discover fluid inside the brain). The aim of this research is to construct a framework that can identify cancer-damaged areas to be isolated from non-tumor. We use 4D image light field segmentation, which is followed by MATLAB modeling techniques, and measure the size of brain-damaged cells deep inside CSF. Data is usually collected from the support vector machine (SVM) tool using MATLAB's included K-Nearest Neighbor (KNN) algorithm. We propose a 4D light field tool (LFT) modulation method that can be used for the light editing field application. Depending on the input of the user, an objective evaluation of each ray is evaluated using the KNN to maintain the 4D frequency (redundancy). These light fields' approaches can help increase the efficiency of device segmentation and light field composite pipeline editing, as they minimize boundary artefacts.

A Study on Recruitment Strategies for Military Officer Personnel Considering the Characteristics of the MZ Generation (MZ세대 특성을 고려한 군 간부 인력 충원 전략 연구)

  • Seung-Hyun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.105-109
    • /
    • 2024
  • This study analyzes the increasingly severe issue of recruiting military officer personnel due to low birth rates and social changes, and seeks to explore recruitment strategies that consider the characteristics of the MZ generation. The military strives to maintain security amidst ongoing military threats from North Korea, but the sharp decline in birth rates significantly impacts conscription resources and personnel recruitment. Additionally, the shift in values among the MZ generation and the cultural gap between them and the military organization make it challenging to attract outstanding talents. The MZ generation values work-life balance, horizontal relationships, and self-fulfillment, finding the authoritative and hierarchical military culture unattractive. Therefore, this study aims to diagnose the problems in military personnel recruitment and propose tailored recruitment strategies reflecting the characteristics of the MZ generation, ultimately exploring sustainable development directions for the future military.

Sound Based Machine Fault Diagnosis System Using Pattern Recognition Techniques

  • Vununu, Caleb;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.134-143
    • /
    • 2017
  • Machine fault diagnosis recovers all the studies that aim to detect automatically faults or damages on machines. Generally, it is very difficult to diagnose a machine fault by conventional methods based on mathematical models because of the complexity of the real world systems and the obvious existence of nonlinear factors. This study develops an automatic machine fault diagnosis system that uses pattern recognition techniques such as principal component analysis (PCA) and artificial neural networks (ANN). The sounds emitted by the operating machine, a drill in this case, are obtained and analyzed for the different operating conditions. The specific machine conditions considered in this research are the undamaged drill and the defected drill with wear. Principal component analysis is first used to reduce the dimensionality of the original sound data. The first principal components are then used as the inputs of a neural network based classifier to separate normal and defected drill sound data. The results show that the proposed PCA-ANN method can be used for the sounds based automated diagnosis system.

Development of a novel reconstruction method for two-phase flow CT with improved simulated annealing algorithm

  • Yan, Mingfei;Hu, Huasi;Hu, Guang;Liu, Bin;He, Chao;Yi, Qiang
    • Nuclear Engineering and Technology
    • /
    • v.53 no.4
    • /
    • pp.1304-1310
    • /
    • 2021
  • Two-phase flow, especially gas-liquid two-phase flow, has a wide application in industrial field. The diagnosis of two-phase flow parameters, which directly determine the flow and heat transfer characteristics, plays an important role in providing the design reference and ensuring the security of online operation of two-phase flow system. Computer tomography (CT) is a good way to diagnose such parameters with imaging method. This paper has proposed a novel image reconstruction method for thermal neutron CT of two-phase flow with improved simulated annealing (ISA) algorithm, which makes full use of the prior information of two-phase flow and the advantage of stochastic searching algorithm. The reconstruction results demonstrate that its reconstruction accuracy is much higher than that of the reconstruction algorithm based on weighted total difference minimization with soft-threshold filtering (WTDM-STF). The proposed method can also be applied to other types of two-phase flow CT modalities (such as X(𝛄)-ray, capacitance, resistance and ultrasound).