• Title/Summary/Keyword: Security Devices

Search Result 1,603, Processing Time 0.024 seconds

A Security-oriented Operation Scheme of FACTS Devices to Cope with A Single Line-faulted Contingency (단일 선로고장시 정적 안전도 향상을 위한 유연송전기기 운전 방안)

  • Lim, Jung-Uk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.149-155
    • /
    • 2004
  • This paper presents how to find proper operating points of FACTS devices to enhance the steady-state security level considering line contigency analysis. Three generic types of FACTS devices such as series controllers, shunt controllers, and series-shunt controllers are introduced and applied to moximize a security margin and to minimize security indices. Security indices related to line flows and bus voltages are utilized and minimized iteratively in this paper. Contingency analysis is performed to detect the most severe single line fault. In various load conditions, FACTS devices are tested to establish appropriate preventive or corrective action without generation re-dispatching or load shedding. The FACTS operation scheme is verified on the IEEE 57-bus system in a line-faulted contingency.

Feasibility of Societal Model for Securing Internet of Things

  • Tsunoda, Hiroshi;Roman, Rodrigo;Lopez, Javier;Keeni, Glenn Mansfield
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3567-3588
    • /
    • 2018
  • In the Internet of Things (IoT) concept, devices communicate autonomously with applications in the Internet. A significant aspect of IoT that makes it stand apart from present-day networked devices and applications is a) the very large number of devices, produced by diverse makers and used by an even more diverse group of users; b) the applications residing and functioning in what were very private sanctums of life e.g. the car, home, and the people themselves. Since these diverse devices require high-level security, an operational model for an IoT system is required, which has built-in security. We have proposed the societal model as a simple operational model. The basic concept of the model is borrowed from human society - there will be infants, the weak and the handicapped who need to be protected by guardians. This natural security mechanism works very well for IoT networks which seem to have inherently weak security mechanisms. In this paper, we discuss the requirements of the societal model and examine its feasibility by doing a proof-of-concept implementation.

Towards Choosing Authentication and Encryption: Communication Security in Sensor Networks

  • Youn, Seongwook;Cho, Hyun-chong
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1307-1313
    • /
    • 2017
  • Sensor networks are composed of provide low powered, inexpensive distributed devices which can be deployed over enormous physical spaces. Coordination between sensor devices is required to achieve a common communication. In low cost, low power and short-range wireless environment, sensor networks cope with significant resource constraints. Security is one of main issues in wireless sensor networks because of potential adversaries. Several security protocols and models have been implemented for communication on computing devices but deployment these models and protocols into the sensor networks is not easy because of the resource constraints mentioned. Memory intensive encryption algorithms as well as high volume of packet transmission cannot be applied to sensor devices due to its low computational speed and memory. Deployment of sensor networks without security mechanism makes sensor nodes vulnerable to potential attacks. Therefore, attackers compromise the network to accept malicious sensor nodes as legitimate nodes. This paper provides the different security models as a metric, which can then be used to make pertinent security decisions for securing wireless sensor network communication.

A Study on Cyber Security Threat and Security Requirements for Industrial Wireless Communication Devices (산업용 무선통신기기 사이버 보안위협 및 보안요구사항에 관한 연구)

  • Lee, Jiseop;Park, Kyungmi;Kim, Sinkyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.4
    • /
    • pp.757-770
    • /
    • 2020
  • Industrial Control System(ICS) is a system that measures, monitors, and controls various distributed assets, and is used in industrial facilities such as energy, chemical, transportation, water treatment, and manufacturing plants or critial infrastructure. Because ICS system errors and interruptions can cause serious problem and asset damage, research on prevention and minimization of security threats in industrial control systems has been carried out. Previously wireless communication was applied in limited fields to minimize security risks, but the demand for industrial wireless communication devices is increasing due to ease of maintenance and cost advantages. In this paper, we analyzed the security threats of industrial wireless communication devices supporting WirelessHART and ISA100.11a. Based on the analysis results, we proposed the security requirements for adopting and operating industrial wireless communication devices. We expect that the proposed requirements can mitigate security threats of industrial wireless devices in ICS.

Cloud security authentication platform design to prevent user authority theft and abnormal operation during remote control of smart home Internet of Things (IoT) devices (스마트 홈 사물인터넷 기기(IoT)의 원격제어 시 사용자 권한 탈취 및 이상조작 방지를 위한 클라우드 보안인증 플랫폼 설계)

  • Yoo Young Hwan
    • Convergence Security Journal
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • The use of smart home appliances and Internet of Things (IoT) devices is growing, enabling new interactions and automation in the home. This technology relies heavily on mobile services which leaves it vulnerable to the increasing threat of hacking, identity theft, information leakage, serious infringement of personal privacy, abnormal access, and erroneous operation. Confirming or proving such security breaches have occurred is also currently insufficient. Furthermore, due to the restricted nature of IoT devices, such as their specifications and operating environments, it is difficult to provide the same level of internet security as personal computers. Therefore, to increase the security on smart home IoT devices, attention is needed on (1) preventing hacking and user authority theft; (2) disabling abnormal manipulation; and (3) strengthening audit records for device operation. In response to this, we present a plan to build a cloud security authentication platform which features security authentication management functionality between mobile terminals and IoT devices.

Enhancing Internet of Things Security with Random Forest-Based Anomaly Detection

  • Ahmed Al Shihimi;Muhammad R Ahmed;Thirein Myo;Badar Al Baroomi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2024
  • The Internet of Things (IoT) has revolutionized communication and device operation, but it has also brought significant security challenges. IoT networks are structured into four levels: devices, networks, applications, and services, each with specific security considerations. Personal Area Networks (PANs), Local Area Networks (LANs), and Wide Area Networks (WANs) are the three types of IoT networks, each with unique security requirements. Communication protocols such as Wi-Fi and Bluetooth, commonly used in IoT networks, are susceptible to vulnerabilities and require additional security measures. Apart from physical security, authentication, encryption, software vulnerabilities, DoS attacks, data privacy, and supply chain security pose significant challenges. Ensuring the security of IoT devices and the data they exchange is crucial. This paper utilizes the Random Forest Algorithm from machine learning to detect anomalous data in IoT devices. The dataset consists of environmental data (temperature and humidity) collected from IoT sensors in Oman. The Random Forest Algorithm is implemented and trained using Python, and the accuracy and results of the model are discussed, demonstrating the effectiveness of Random Forest for detecting IoT device data anomalies.

Edge Security System for Factory Automation Devices (생산자동화설비의 종단보안 시스템 구조)

  • Hwang, Ho-Young;Kim, Seung-Cheon;Ro, Kwang-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.251-258
    • /
    • 2012
  • The conventional network security solutions for manufacturing or factory automation devices are concentrated on protecting the internal networks from the attacks of external networks. Recently, however, so called Day-zero attacks are increased; the threat from internal devices such as notebooks, USB devices are as critical as attacks from external networks. Thus a new security solution is needed to protect manufacturing devices from both external and internal threat. To this purpose, we propose an edge-security system to provide cost effective, integrated, and simple end-point security solution specialized for automated manufacturing devices, which may avoid the shortcomings of NAC.

Implementation of Telebiometrics Application System Using Mobile Device

  • Shin, Yong-Nyuo;Kim, Jae-Sung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.34-40
    • /
    • 2014
  • Today, with the wide use of mobile devices, the amount of business transactions conducted through such devices is increasing drastically. However, there are several limitations in the area of authentication for mobile use, which requires strong authentication mechanisms to satisfy security and convenience requirements. The proposed model and application system provide a framework to ensure the security and reliability of the flow of biometric information for telebiometric applications using mobile devices. We also specify protocols for each model and implement a mobile telebiometric application to improve security vulnerabilities compared to storage in a microSD match on card (MOC) based on the proposed model. As a consequence of this implementation, we propose substantial guidelines for security countermeasures from both technical and managerial perspectives in order to establish a safe mobile environment for the use of telebiometric systems.

Analyses of additive Crypto-module Architecture for a Sensor Network (센서 네트워크를 위한 부가적인 암호모듈의 구조 분석)

  • Kim, Jung-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.795-798
    • /
    • 2005
  • In this paper, we analyses of additive crypto-module architecture for a sensor network. Recent research in sensor networks has raised security issues for small embedded devices. Security concerns are motivated by the development of a large number of sensor devices in the field. Limitations in processing power, battery life, communication bandwidth and memoryconstrain devices. A mismatch between wide arithmetic for security and embedded data buscombined with lack of certain operations. Then, we compared the architecture of crypto-module in this paper.

  • PDF

A Study on the High-Speed Malware Propagation Method for Verification of Threat Propagation Prevent Technology in IoT Infrastructure (IoT 인프라 공격 확산 방지 기술 성능 검증을 위한 악성코드 고속 확산 기법 연구)

  • Hwang, Song-yi;Kim, Jeong-Nyeo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.617-635
    • /
    • 2021
  • Internet of Things (IoT) devices connected to the network without appropriate security solutions have become a serious security threat to ICT infrastructure. Moreover, due to the nature of IoT devices, it is difficult to apply currently existing security solutions. As a result, IoT devices have easily become targets for cyber attackers, and malware attacks on IoT devices are actually increasing every year. Even though several security solutions are being developed to protect IoT infrastructure, there is a great risk to apply unverified security solutions to real-world environments. Therefore, verification tools to verify the functionality and performance of the developed security solutions are also needed. Furthermore, just as security threats vary, there are several security solution s that defend against them, requiring suitable verification tools based on the characteristics of each security solution. In this paper, we propose an high-speed malware propagation tool that spreads malware at high speed in the IoT infrastructure. Also, we can verify the functionality of the security solution that detect and quickly block attacks spreading in IoT infrastructure by using the high-speed malware propagation tool.