• Title/Summary/Keyword: Secondary wall biosynthesis

Search Result 7, Processing Time 0.023 seconds

AtMYB7 Acts as a repressor of lignin biosynthesis in Arabidopsis (애기장대 MYB7 유전자의 리그닌 생합성 억제 조절)

  • Kim, Won-Chan
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.3
    • /
    • pp.215-220
    • /
    • 2016
  • Abstract Secondary cell wall is the most abundant biomass produced by plants. Plant secondary cell wall is composed of a complex mixture of cellulose, hemicellulose, and lignin. Lignin, a phenolic polymer that hinders the degradation of cell wall polysaccharides to simple sugars destined for fermentation to bio-ethanol. Cell wall biosynthesis pathway-specific biomass engineering offers an attractive 'genetic pretreatment' strategy to improve bioenergy feedstock. Recently, we found a transcription factor, MYB7, which is a transcriptional switch that may turns off the genes necessary for lignin biosynthesis. To gain insights into MYB7 mediated transcriptional regulation, we first established a dominant suppression system in Arabidopsis by expressing MYB7-SRDX. Then we used a transient transcriptional activation assay to confirm that MYB7 suppress the transcription of the lignin biosynthetic gene. Taken together, we conclude that MYB7 function as a repressor of the genes involved in the lignin biosynthesis.

Biotechnological improvement of lignocellulosic feedstock for enhanced biofuel productivity and processing

  • Ko, Jae-Heung;Kim, Hyun-Tae;Han, Kyung-Hwan
    • Plant Biotechnology Reports
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • Secondary walls have recently drawn research interest as a primary source of sugars for liquid biofuel production. Secondary walls are composed of a complex mixture of the structural polymers cellulose, hemicellulose, and lignin. A matrix of hemicellulose and lignin surrounds the cellulose component of the plant's cell wall in order to protect the cell from enzymatic attacks. Such resistance, along with the variability seen in the proportions of the major components of the mixture, presents process design and operating challenges to the bioconversion of lignocellulosic biomass to fuel. Expanding bioenergy production to the commercial scale will require a significant improvement in the growth of feedstock as well as in its quality. Plant biotechnology offers an efficient means to create "targeted" changes in the chemical and physical properties of the resulting biomass through pathway-specific manipulation of metabolisms. The successful use of the genetic engineering approach largely depends on the development of two enabling tools: (1) the discovery of regulatory genes involved in key pathways that determine the quantity and quality of the biomass, and (2) utility promoters that can drive the expression of the introduced genes in a highly controlled manner spatially and/or temporally. In this review, we summarize the current understanding of the transcriptional regulatory network that controls secondary wall biosynthesis and discuss experimental approaches to developing-xylem-specific utility promoters.

Tension Wood as a Model System to Explore the Carbon Partitioning between Lignin and Cellulose Biosynthesis in Woody Plants

  • Kwon, Mi
    • Journal of Applied Biological Chemistry
    • /
    • v.51 no.3
    • /
    • pp.83-87
    • /
    • 2008
  • Tension wood, a specialized tissue developed in the upper side of the leaning stem and drooping branches of angiosperm, is an attractive experimental system attractive for exploring the development and the biochemical pathways of the secondary cell wall formation, as well as the control mechanism of the carbon flux into lignin, cellulose, and hemicellulose. However, the mechanism underlying the induction and the development of the tension wood is largely unknown. Recently, several researchers suggested the possible roles of the plant growth hormones including auxin, gibberellin, and ethylene mainly based on the expression pattern of the genes in this specialized tissue. In addition, expressed sequence tag of Poplar and Eucalyptus provide global view of the genetic control underlying the tension wood formation. However, the roles of the majority of the identified genes have not yet been clearly elucidated. The present review summarized current knowledge on the biosynthesis of tension wood to provide a brief synopsis of the molecular mechanism underlying the development of the tension wood.

Gibberellins enhance plant growth and ginsenoside content in Panax ginseng

  • Hong, Chang Pyo;Jang, Gwi Yeong;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.186-192
    • /
    • 2021
  • The roots of Korean ginseng (Panax ginseng) have a long history of usage as a medicinal drug. Ginsenosides, a group of triterpenioid saponins in ginseng, have been reported to show important pharmacological effects. Many studies have attempted to identify the ginsenoside synthesis pathways of P. ginseng and to increase crop productivity. Recent studies have shown that exogenous gibberellin (GA) treatments promote storage root secondary growth by integration of the modulating cambium stem cell homeostasis with a secondary cell wall-related gene network. However, the dynamic regulation of ginsenoside synthesis-related genes and their contents by external signaling cues has been rarely evaluated. In this study, we confirmed that GA treatment not only enhanced the secondary growth of P. ginseng storage roots, but also significantly enriched the terpenoid biosynthesis process in RNA-seq analysis. Consistently, we also found that the expression of most genes involved in the ginsenoside synthesis pathways, including those encoding methylerythritol-4-phosphate (MEP) and mevalonate (MVA), and the saponin content in both leaves and roots was increased by exogenous GA application. These results can be used in future development of biotechnology for ginseng breeding and enhancement of saponin content.

Structural Characteristics of Cell Walls of Forage Grasses - Their Nutritional Evaluation for Ruminants - - Review -

  • Iiyama, Kenji;Tuyet Lam, Thi Bach
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.862-879
    • /
    • 2001
  • The walls of all higher plants are organized as a cellulosic, fibrillar phase embedded in a matrix phase composed of non-cellulosic polysaccharides, some proteins and, in most secondary walls, lignin. At the effective utilization of plant biomass, qualitative and quantitative analyses of plant cell walls are essential. Structural features of individual components are being clarified using newly developed equipments and techniques. However, "empirical" procedures to elucidate plant cell walls, which are not due to scientific definition of components, are still applied in some fields. These procedures may give misunderstanding for the effective utilization of plant biomass. In addition, interesting the investigation of wall organization is moving towards not only qualitatively characterisation, but also quantitation of the associations between wall components. These involve polysaccharide-polysaccharide and polysaccharide-lignin cross-links. Investigation of the associations is being done in order to understand the chemical structure, organization and biosynthesis of the cell wall and physiology of the plants. Procedures for qualitative and quantitative analyses based on the definition of cell wall components are reviewed focussing in nutritional elucidation of forage grasses by ruminant microorganisms.

Comparative Transcriptomic Analysis of MAPK-Mediated Regulation of Sectorization in Cryphonectria parasitica

  • Chun, Jeesun;So, Kum-Kang;Ko, Yo-Han;Kim, Jung-Mi;Kim, Dae-Hyuk
    • Molecules and Cells
    • /
    • v.42 no.4
    • /
    • pp.363-375
    • /
    • 2019
  • Fungal sectorization is a complex trait that is still not fully understood. The unique phenotypic changes in sporadic sectorization in mutants of CpBck1, a mitogen-activated protein kinase kinase kinase (MAPKKK) gene, and CpSlt2, a mitogen-activated protein kinase (MAPK) gene, in the cell wall integrity pathway of the chestnut blight fungus Cryphonectria parasitica have been previously studied. Although several environmental and physiological factors cause this sectoring phenotype, genetic variants can also impact this complex morphogenesis. Therefore, RNA sequencing analysis was employed to identify candidate genes associated with sectorization traits and understand the genetic mechanism of this phenotype. Transcriptomic analysis of CpBck1 and CpSlt2 mutants and their sectored progeny strains revealed a number of differentially expressed genes (DEGs) related to various cellular processes. Approximately 70% of DEGs were common between the wild-type and each of CpBck1 and CpSlt2 mutants, indicating that CpBck1 and CpSlt2 are components of the same MAPK pathway, but each component governs specific sets of genes. Functional description of the DEGs between the parental mutants and their sectored progenies revealed several key pathways, including the biosynthesis of secondary metabolites, translation, amino acid metabolism, and carbohydrate metabolism; among these, pathways for secondary metabolism and translation appeared to be the most common pathway. The results of this comparative study provide a better understanding of the genetic regulation of sector formation and suggest that complex several regulatory pathways result in interplays between secondary metabolites and morphogenesis.

Assessment of Erythrobacter Species Diversity through Pan-Genome Analysis with Newly Isolated Erythrobacter sp. 3-20A1M

  • Cho, Sang-Hyeok;Jeong, Yujin;Lee, Eunju;Ko, So-Ra;Ahn, Chi-Yong;Oh, Hee-Mock;Cho, Byung-Kwan;Cho, Suhyung
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.4
    • /
    • pp.601-609
    • /
    • 2021
  • Erythrobacter species are extensively studied marine bacteria that produce various carotenoids. Due to their photoheterotrophic ability, it has been suggested that they play a crucial role in marine ecosystems. It is essential to identify the genome sequence and the genes of the species to predict their role in the marine ecosystem. In this study, we report the complete genome sequence of the marine bacterium Erythrobacter sp. 3-20A1M. The genome size was 3.1 Mbp and its GC content was 64.8%. In total, 2998 genetic features were annotated, of which 2882 were annotated as functional coding genes. Using the genetic information of Erythrobacter sp. 3-20A1M, we performed pan-genome analysis with other Erythrobacter species. This revealed highly conserved secondary metabolite biosynthesis-related COG functions across Erythrobacter species. Through subsequent secondary metabolite biosynthetic gene cluster prediction and KEGG analysis, the carotenoid biosynthetic pathway was proven conserved in all Erythrobacter species, except for the spheroidene and spirilloxanthin pathways, which are only found in photosynthetic Erythrobacter species. The presence of virulence genes, especially the plant-algae cell wall degrading genes, revealed that Erythrobacter sp. 3-20A1M is a potential marine plant-algae scavenger.