• Title/Summary/Keyword: Secondary vortex

Search Result 185, Processing Time 0.027 seconds

Experimental Study on the Horseshoe Vortex Systems Around Surface-Mounted Obstacles (평판 위에 부착된 실린더 주위의 말굽와류 시스템에 관한 실험적 연구)

  • 양준모;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1979-1989
    • /
    • 1992
  • An experimental study has been performed to investigate the horseshoe vortex system formed around cylindrical obstacles mounted vertically on the surface over which a boundary layer is formed. To measure the mean velocity of the flow field, a five-hole Pitot tube has been used. In addition, surface static pressure measurements and surface flow visualization were also performed. From the five-hole probe measurements, vorticity distribution was deduced numerically and the streamwise velocity distribution was also examined. To consider the effect of the leading-edge shape on the formation of the horseshoe vortex, a qualitative comparison was made between the three-dimensional flows around a circular cylinder and a wedge-type cylinder. The five-hole probe measurements showed a single primary vortex which exists immediately upstream of the obstacles, and endwall flow visualization showed the existence of a corner vortex. As the vortex passes around the obstacle, the vortex strength is reduced and the vortex core moves radially outward. Due to this horseshoe vortex, the fluid momentum is found to decrease along the streamwise direction. Since the horseshoe vortex formed around a wedge-type cylinder has weaker strength and is confined to a narrower region than that around a circular, the possibility that the secondary flow loss due to the horseshoe vortex can be reduced through a change of the leading- edge shape is proposed.

A Study on Characteristics of Secondary Vortices in the Near Wake of a Circular Cylinder by PIV Measurement (PIV 계측에 의한 실린더 근접후류에서 2차 와류의 특성 연구)

  • Sung, Jae-Yong;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.404-409
    • /
    • 2000
  • Characteristics of secondary vortices is topologically investigated in the near-wake region of a circular cylinder where the Taylor hypothesis does not hold. The three-dimensional flow fields in the wake-transition regime were measured by a time-resolved PIV. For the analysis in a moving frame of reference, the convection velocity of the Karman vortices is evaluated from the trajectory of vortex center which is defined as the centroid of the vorticity field. Then, a saddle point is obtained by applying the critical point theory. Science the distributions of fluctuating Reynolds stresses defined by triple-decomposition are closely related with the existence of secondary vortices. the physical meaning of them is explained in conjunction with vortex center and saddle point trajectories. Finally, the temporal evolution of streamwise vortex is also discussed.

  • PDF

Phase-Locked Three-Dimensional Structures in the Cylinder Wake Observed from Cinematic PIV Data (Cinematic PIV에 의한 실린더 후류의 위상평균된 3차원 구조)

  • Sung, Jae-Yong;Park, Kang-Kuk;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.661-666
    • /
    • 2000
  • Near-wake flow field of a circular cylinder is studied by means of a cinematic PIV system with high sampling rate and large internal memory block. Experiments are conducted in a closed-cycle water tunnel system and a cross-correlation algorithm in conjunction with FFT (Fast Fourier Transform) analysis and an offset correlation technique is used for vector processing. With the help of very high sampling frequency compared to the shedding frequency, it is possible to obtain phase-averaged information of the three-dimensional wake, even though the shedding is not forced but natural. Phase-locked vortical structures observed simultaneously from the spanwise and cross-stream planes are displayed in the wake-transition regime where fine-scale secondary vortices have a spanwise wavelength or around one diameter. Spatial relations and temporal evolutions of the primary Karman vortex and the secondary vortex are also discussed schematically.

  • PDF

An Experimental Study for the Structure of Conical Vortex at the Low-Rise Building Roof by using a PIV Technique (PIV기법을 이용한 저층 건물 지붕에서 발생되는 원추형 와의 구조에 대한 실험적 연구)

  • Ji, Ho-Seong;Jeong, Eun-Ho;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.667-672
    • /
    • 2000
  • The Characteristics of the conical vortices on the roof surface of a low-rise building has been investigated by using a PIV(Particle Image Velocimerty) technique. The scaled model of TTU building with 1:92 scaling ratio was used. The Reynolds number based on the free stream velocity and the length of the model was $1.96{\times}10^5$. When the angle of attack for the building model is $45^{\circ}$, the conical vortices are occurred symmetrically and the center of vortices are changed with respect to the angle of the approaching flow. The rotating direction of the conical vortices found to be counter-rotating. The secondary vortex motions are investigated using the instantaneous flow field data.

  • PDF

Heat Transfer Characteristics on Impingement Surface with Control of Axisymmetric Jet(I) (원형제트출구 전단류 조절에 따른 제트충돌면에서의 열전달 특성)

  • Lee, Chang-Ho;Kim, Yeong-Seok;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.3
    • /
    • pp.386-398
    • /
    • 1998
  • The present experiment is conducted to investigate heat transfer characteristics on the impinging surface with secondary flows around circular nozzle jets. The changed vortex pattern around jet affects significantly the flow characteristics and heat transfer coefficients on the impinging surface. The effects of the jet vortex control are also considered with jet nozzle-to-plate distances and main jet velocities. The vortex pattern around a jet is changed from a convective instability to an absolute instability with a velocity suction ratio of the main jet and the secondary counterflow. With the absolute instability condition, the jet potential core length increases and the heat transfer on the impinging surface is increased by small scale eddies. The region of high heat transfer coefficients is enlarged with the high Reynolds number due to increasing secondary peak values. The effect of suction flows is influenced largely with collars attached the exit of the jet nozzle because the attached collar guides well the counterflow around the main jet.

A Comparative Study of Numerical Methods on Aerodynamic Characteristics of a Compressor Rotor at Near-stall Condition

  • Kim, Donghyun;Kim, Kuisoon;Choi, Jeongyeol;Son, Changmin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present work performs three-dimensional flow calculations based on Reynolds Averaged Navier-Stokes (RANS) and Delayed Detached Eddy Simulation (DDES) to investigate the flow field of a transonic rotor (NASA Rotor 37) at near-stall condition. It is found that the DES approach is likely to predict well the complex flow characteristics such as secondary vortex or turbulent flow phenomenon than RANS approach, which is useful to describe the flow mechanism of a transonic compressor. Especially, the DES results show improvement of predicting the flow field in the wake region and the model captures reasonably well separated regions compared to the RANS model. Besides, it is discovered that the three-dimensional vortical flows after the vortex breakdown from the rotor tip region are widely distributed and its vortex structures are clearly present. Near the rotor leading edge, a part of the tip leakage flows in DES solution spill over into next passage of the blade owing to the separation vortex flow and the backflow is clearly seen around the trailing edge of rotor tip. Furthermore, the DES solution shows strong turbulent eddies especially in the rotor hub, rotor tip section and the downstream of rotor trailing edge compared to the RANS solution.

The effect of Reynolds number on the elliptical cylinder wake

  • Shi, Xiaoyu;Alam, Md. Mahbub;Bai, Honglei;Wang, Hanfeng
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.525-532
    • /
    • 2020
  • This work numerically investigates the effects of Reynolds number ReD (= 100 - 150), cross-sectional aspect ratio AR = ( 0.25 -1.0), and attack angle α (= 0° - 90°) on the forces, Strouhal number, and wake of an elliptical cylinder, where ReD is based on the freestream velocity and cylinder cross-section height normal to the freestream flow, AR is the ratio of the minor axis to the major axis of the elliptical cylinder, and α is the angle between the cylinder major axis and the incoming flow. At ReD = 100, two distinct wake structures are identified, namely 'Steady wake' (pattern I) and 'Karman wake followed by a steady wake (pattern II)' when AR and α are varied in the ranges specified. When ReD is increased to 150, an additional wake pattern, 'Karman wake followed by secondary wake (pattern III)' materializes. Pattern I is characterized by two steady bubbles forming behind the cylinder. Pattern II features Karman vortex street immediately behind the cylinder, with the vortex street transmuting to two steady shear layers downstream. Inflection angle αi = 32°, 37.5° and 45° are identified for AR = 0.25, 0.5 and 0.75, respectively, where the wake asymmetry is the greatest. The αi effectively distinguishes the dependence on α and AR of force and vortex shedding frequency at either ReD. In Pattern III, the Karman street forming behind the cylinder is modified to a secondary vortex street. At a given AR and α, ReD = 150 renders higher fluctuating lift and Strouhal number than ReD = 100.

A Study on the Recycling of Aluminum Chip by Vortex Melting Method (Vortex melting법에 의한 알루미늄 chip의 재활용에 관한 연구)

  • 김정호;김경민;윤의박
    • Resources Recycling
    • /
    • v.6 no.4
    • /
    • pp.24-30
    • /
    • 1997
  • The recent trend of recycle of mold scrap is to make high quality secondary ingot which can be used as raw malerial undcr intensive control of scrap. In this study, recycle of aluminum chlp generated atter machinmg process of castings was performed by vortex melting melhod Vortex melting technique was adopted for chip mclting process. The condition far optimal vortcx depth was decided using water mndellng experiment varying the shape, location, rotating speed of stlircr and watcr levcl. Before melting, chips were preheated at room temperame, 200, 300, $ 400^{\circ}C$and then submerged in the mirldle of vortex. The lecovery rale depending on the temperature was examined. As a result vortex depth was influenccd only by shape and rotating speed of stirrer, and the hlghest recovery rate oI 97% was obta~nedw hcn the submerged chip was preheated at $300^{\circ}C.$

  • PDF

Flow and Temperature Characteristics in a Circular Impinging Jet (원형 충돌 제트에서의 유동 및 온도 특성)

  • Kim Jungwoo;Choi Haecheon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.237-240
    • /
    • 2002
  • In the present study, we perform LES of turbulent flow and temperature fields in a circular impinging jet at Re=5000 for two cases of H/D=2 and 6 (H denotes the distance between the jet exit and flat plate, and D does the diameter of the jet exit). In the case of H/D=2, the regular vortical structures observed in free jet do not exist because of the smaller distance than the potential core. The Nusselt number on the wall is largest at $r/D{\cong}10.67$ where vortex rings Impinge. At $r/D{\cong}1.5{\~}2.0$, the vortex rings induce the secondary vortices, resulting in a secondary peak in the Nusselt number there. In the case of H/D=6, the vortex rings change into three-dimensional vortical structures and the small-scale vortices impinge on the flat plate. The increase of turbulent intensity due to small-scale vortices results in the largest Nusselt number at the stagnation point.

  • PDF

Effects of Corrugation Angle on Local Heat/mass Transfer in Wavy Duct. (열교환기 내부 유로 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang, In-Hyuk;Hwang, Sang-Dong;Cho, Hyun-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.97-102
    • /
    • 2003
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts by using a naphthalene sublimation technique. The corrugation angles of the wavy ducts are $145^{\circ}$ , $130^{\circ}$ and $115^{\circ}$ . and the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. At the low $Re(Re{\leq}1000)$, high heat/mass transfer regions are formed by the secondary vortex flows called Taylor-Gortler vortices on both pressure-side and suction-side walls. At the high $Re(Re{\geq}1000)$, the effects of these secondary flows are vanished. As corrugation angle decreases, the local peak Sh induced by Taylor-Gertler vortices are increased and average Sh also enhanced. More pumping power (pressure loss) is required with the smaller corrugation angle due to the stronger secondary vortex flows.

  • PDF