• 제목/요약/키워드: Secondary metabolite biosynthesis

검색결과 55건 처리시간 0.024초

환경스트레스 처리에 의한 개똥쑥 artemisinin 생합성 증진 (Enhanced biosynthesis of artemisinin by environmental stresses in Artemisia annua)

  • 김경운;황철호
    • Journal of Plant Biotechnology
    • /
    • 제49권4호
    • /
    • pp.307-315
    • /
    • 2022
  • 개똥쑥은 말라리아 등 다양한 질병의 치료물질인 artemisinin 제공하나, 식물체 내 농도가 낮고, 생산이 불안정하여 국제적 수요에 대응하지 못하고 있다. 재배환경을 인공적으로 제어하는 식물공장 시스템은 계절이나 장소에 제한 없이 약용식물의 공장식 생산체계가 가능하다(Kim 2010). 본 연구에서는 식물공장에서 개똥쑥의 artemisinin의 대량생산이 가능한 최적의 조건을 찾기 위하여 파종부터 수확까지 적색광(R)과 청색광(B)을 혼합한 3종류의 LED (R : B = 6 : 4, 7 : 3, 8 : 2)에서 생장 및 물질생산에 적합한 광조건을 탐색하였다. 개똥쑥의 수확 전, 1,395 ㎼/cm2의 UV-B, 4℃의 저온, 그리고 건조 처리로 식물에 hormesis를 유도하여 artemisinin의 생산 증가를 확인하였다. Artemisinin 생합성에 관여하는 효소들 중에서 ADS, CYP, ALDH1의 발현량을 qPCR로 측정하였고, artemisinin 정량을 통해 전사체와 대사물질의 연관성을 확인하고, artemisinin 생산에 적합한 재배 광조건과 hormesis 처리 조건을 탐색하였다. 3종의 LED 비율 중 8 : 2에서 높은 생체중 및 건물중을 생산했으며, hormesis를 유도하기 위한 3종의 물리 처리에서 이를 통해 7 : 3 식물을 수확전 6시간 건조처리했을 때 artemisinin 함량이 약 2배 증가하였다.

Overexpression of ginseng cytochrome P450 CYP736A12 alters plant growth and confers phenylurea herbicide tolerance in Arabidopsis

  • Khanom, Sanjida;Jang, Jinhoon;Lee, Ok Ran
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.645-653
    • /
    • 2019
  • Background: Cytochrome P450 enzymes catalyze a wide range of reactions in plant metabolism. Besides their physiological functions on primary and secondary metabolites, P450s are also involved in herbicide detoxification via hydroxylation or dealkylation. Ginseng as a perennial plant offers more sustainable solutions to herbicide resistance. Methods: Tissue-specific gene expression and differentially modulated transcripts were monitored by quantitative real-time polymerase chain reaction. As a tool to evaluate the function of PgCYP736A12, the 35S promoter was used to overexpress the gene in Arabidopsis. Protein localization was visualized using confocal microscopy by tagging the fluorescent protein. Tolerance to herbicides was analyzed by growing seeds and seedlings on Murashige and Skoog medium containing chlorotoluron. Results: The expression of PgCYP736A12 was three-fold more in leaves compared with other tissues from two-year-old ginseng plants. Transcript levels were similarly upregulated by treatment with abscisic acid, hydrogen peroxide, and NaCl, the highest being with salicylic acid. Jasmonic acid treatment did not alter the mRNA levels of PgCYP736A12. Transgenic lines displayed slightly reduced plant height and were able to tolerate the herbicide chlorotoluron. Reduced stem elongation might be correlated with increased expression of genes involved in bioconversion of gibberellin to inactive forms. PgCYP736A12 protein localized to the cytoplasm and nucleus. Conclusion: PgCYP736A12 does not respond to the well-known secondary metabolite elicitor jasmonic acid, which suggests that it may not function in ginsenoside biosynthesis. Heterologous overexpression of PgCYP736A12 reveals that this gene is actually involved in herbicide metabolism.

생합성 경로의 이해를 통한 Avermectin $B_{1a}$ 고생산성 변이주 개발 (Development of Avermectin $B_{1a}$ High-yielding Mutants through Rational Screening Srategy based on Understanding of Biosynthetic Pathway)

  • 송성기;정용섭;전계택
    • KSBB Journal
    • /
    • 제20권5호
    • /
    • pp.376-382
    • /
    • 2005
  • AVM $B_{1a}$는 Streptomyces avermitilis가 생합성하는 이차대사산물로, 강력한 구충효과를 갖는 polyketide 계열의 물질이다. AVM $B_{1a}$ 생합성의 전구체로 isoleucine이 사용되고 AVM의 생합성 경로가 지방산 합성과 유사하므로, 전구체를 과량생합성하고 polyketide 생합성 경로로 진행되는 탄소원의 흐름이 증가된 변이주를 선별하기 위하여 isoleucine의 아미노산 유사체 (O-methyl threonine)와 지방산 합성 저해물질 (p-fluoro phenoxy acetic acid)에 대한 저항성 변이주를 선별하고자 하였다. 모균주의 AVM $B_{1a}$ 생산성은 약 100 units/L로 매우 낮은 반면, 100 ppm의 pFAC에 대한 저항성 변이주인 PFA-1는 약 4,200 units/1의 AVM $B_{1a}$를 생산하는 것으로 관찰되었다. 이 균주를 모균주로 하여 OMT에 대한 저항성을 지속적으로 증가시킬 경우 AVM $B_{1a}$ 생산성이 2배 더 증가한 약 9,000 units/1의 생합성 능력을 보이는 고생산성 변이주를 개발할 수 있었다. 또한 주목할 만하게도 지방산 저해물질인 PFAC에 대한 변이주의 저항성을 지속적으로 증가시킴으로써 AVM $B_{1a}$ 생산성이 11,000 units/L에 이르는 고역가 변이주를 선별할 수 있었다. 한편 상기의 OMT와 pFAC를 이용한 rational screening 전략을 통해 지속적으로 선별한 변이주들에 대한 AVM $B_{1a}$의 생산성 분포를 histogram을 통해 분석해 본 결과, 초반부에 선별된 돌연변이주들은 AVM $B_{1a}$의 생합성 능력에 있어서 거의 모두가 ($95\%$ 이상) 4,000 units/1 이하의 비교적 낮은 범위에 분포하는 반면, OMT와 pFAC의 농도를 높여가며 유도된 저항성 돌연변이주들의 경우에는 이들 중에 고생산성 균주의 비율이 뚜렷하게 증가 (OMT 에서 $5,000\~7,000$ unit/l 범위에 $71\%$; pFAC에서 $6,000\~7,000$ unit/L 범위에 $47\%$) 하는 것으로 확인되었다. 이로부터 polyketide 생합성 경로와 AVM $B_{1a}$의 생합성 경로의 이해를 통해 수행된 rational screening 전략이 AVM $B_{1a}$ 고생산성 뿐만 아니라 고 안정성의 특성을 갖는 균주를 선별하는데 매우 효율적임을 알 수 있었다.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2016년도 춘계학술대회 및 임시총회
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF

Plasma Peptidome as a Source of Biomarkers for Diagnosis of Cholangiocarcinoma

  • Kotawong, Kanawut;Thitapakorn, Veerachai;Roytrakul, Sittiruk;Phaonakrop, Narumon;Viyanant, Vithoon;Na-Bangchang, Kesara
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권3호
    • /
    • pp.1163-1168
    • /
    • 2016
  • Cholangiocarcinoma (CCA) is the bile duct cancer which constitutes one of the important public health problems in Thailand with high mortality rate, especially in the Opisthorchis viverrini (a parasite risk factor for CCA) endemic area of the northeastern region of the country. This study aimed to identify potential biomarkers from the plasma peptidome by CCA patients. Peptides were isolated using 10 kDa cut-off filter column and the flow-through was then used as a peptidome for LC-MS/MS analysis. A total of 209 peptides were obtained. Among these, 15 peptides were concerned with signaling pathways and 12 related to metabolic, regulatory, and biosynthesis of secondary metabolite pathways. Five exclusive peptides were identified as potential biomarkers, i.e. ETS domain-containing transcription factor ERF (P50548), KIAA0220 (Q92617), phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform isoform 1 (P42338), LP2209 (Q6XYC0), and casein kinase II subunit alpha (P19784). Three of these biomarkers are signaling related molecules. A combination of these biomarkers for CCA diagnosis is proposed.

Identification and Characterization of a Pantothenate Kinase (PanK-sp) from Streptomyces peucetius ATCC 27952

  • Mandakh, Ariungerel;Niraula, Narayan Prasad;Kim, Eung-Pil;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권12호
    • /
    • pp.1689-1695
    • /
    • 2010
  • Pantothenate kinase (PanK) catalyzes the first step in the biosynthesis of the essential and ubiquitous cofactor coenzyme A (CoA) in all organisms. Here, we report the identification, cloning, and characterization of panK-sp from Streptomyces peucetius ATCC 27952. The gene encoded a protein of 332 amino acids with a calculated molecular mass of 36.8 kDa and high homology with PanK from S. avermitilis and S. coelicolor A3(2). To elucidate the putative function of PanK-sp, it was cloned into pET32a(+) to construct pPKSP32, and the PanK-sp was then expressed in E. coli BL21(DE3) as a His-tag fusion protein and purified by immobilized metal affinity chromatography. The enzyme assay of PanK-sp was carried out as a coupling assay. The gradual decrease in NADH concentration with time clearly indicated the phosphorylating activity of PanK-sp. Furthermore, the ca. 1.4-fold increase of DXR and the ca. 1.5-fold increase of actinorhodin by in vivo overexpression of panK-sp, constructed in pIBR25 under the control of a strong $ermE^*$ promoter, established its positive role in secondary metabolite production from S. peucetius and S. coelicolor, respectively.

홍국균 발효 메밀에서의 rutin과 monacolin K의 함량 변화 (Content of Rutin and Monacolin K in the Red Buckwheat Fermented with Monascus ruber)

  • 강동주;엄주방;이성구;이종훈
    • 한국식품과학회지
    • /
    • 제35권2호
    • /
    • pp.242-245
    • /
    • 2003
  • 좋은 아미노산 조성의 단백질과 높은 식이섬유 함량을 비롯한 좋은 영양조성을 가지고 있어 건강기능식품의 재료로 주목을 받고 있는 메밀에는 항산화효과, 혈압강하작용 등에 효과가 있는 것으로 알려진 rutin이라는 flavonol 배당체가 많이 함유되어 있다. 홍국의 제조에 쓰이는 Monascus속 곰팡이는 cholesterol 생합성 저해효과를 나타내는 monacolin K라는 대사산물을 생산하는 것으로 보고되었다. 본 연구에서는 두가지 성분을 모두 함유한 건강기능식품의 제조를 위해 도정메밀과 발아시킨 도정메밀을 이용한 홍국을 제조하여 두가지 성분의 변화를 검토하였다. 도정메밀의 발아에 따른 rutin 함량은 초기에 약간 감소하였으나 싹의 길이에 비례하여 증가했고, 홍국균의 증식이 메밀에 함유된 rutin 함량에는 영양을 미치지 않는 것으로 나타났다. 발아시킨 도정메밀로 제조한 홍국의 monacolin K 함량은 발아시키지 않은 도정메밀에서 보다 낮게 나타났으며, 메밀 싹 길이의 증가에 따라 monacolin K 함량은 점차 감소하는 것으로 나타났다. 발아시킨 메밀을 이용한 홍국의 제조에서는 발아에서 오는 탄소원 및 영양분 감소가 홍국균의 증식에 영향을 주어 monacolin K의 함량을 떨어뜨리는 것으로 추정된다.

염화나트륨 처리 및 재배방법이 새싹밀의 항산화 성분 및 활성에 미치는 영향 (The Effects of Sodium Chloride and the Cultivation Method on Antioxidant Compounds and Activities in Wheat (Triticum aestivum) Sprouts)

  • 양지영;이한결;서우덕;이미자;송승엽;최준열;김현영
    • 한국식품영양학회지
    • /
    • 제35권3호
    • /
    • pp.213-222
    • /
    • 2022
  • Sprouts have various health benefits. Specifically, wheat sprouts are rich in bioactive compounds, such as vitamins and polyphenols. Elicitation induces and enhances secondary metabolite biosynthesis in plants. Therefore, in this study, we investigated the effects of sodium chloride (NaCl) treatments on the growth profile, free amino acid content, and antioxidant activity of germinated wheat (Triticum aestivum). Wheat seeds were germinated at 20℃ for 10 days and treated with 0, 2, 4, 7.5, and 10 mM of NaCl 10 days before harvesting. Treating the soil bed with NaCl increased the nutritional component amounts, such as free amino acids and γ-aminobutyric acid. The chlorophyll a and b concentrations were the highest in the hydroponic system treated with 7.5 mM NaCl. In addition, the polyphenol and flavonoid contents of sprouts treated with 2 and 7.5 mM NaCl were 1.94 and 1.34 times higher than that of the control sprouts (0 mM NaCl, water only), respectively. These results suggest that 2 to 4 mM NaCl treatments improve the nutritional and food quality of wheat sprouts more than water only.

기능성 할로겐화 페닐피롤 (Development of Functional Halogenated Phenylpyrrole Derivatives)

  • 정민희;공희정;김영옥;이진호
    • 생명과학회지
    • /
    • 제33권10호
    • /
    • pp.842-850
    • /
    • 2023
  • 피롤니트린, 피롤로마이신, 피오루테오린 등은 미생물 유래의 다양한 항균활성을 갖는 기능성 할로겐화 페닐피롤 유도체들이다. 그 중에서 피롤니트린은 Pseudomonas fluorescens, Burkholderia cepacia, Serratia plymuthica 등에서 L-트립토판으로부터 4단계 반응을 거쳐 만들어내는 이차대사산물이다. 현재 표재성 피부 사상진균 감염의 치료용으로 사용되며, 토양유래 및 엽면 진균감염에 높은 길항작용을 하며, 인체에 무해하여 산업적 응용가치가 높다. 한편 피롤니트린은 빛에 의해 잘 분해되기 때문에 야외에서 광범위하게 사용하는데 어려움이 있다. 그 대안으로 구조적으로 유사하고 광 안정성이 우수한 합성으로 생산되는 비침습성 표면 살균제인 플루디옥소닐이 개발되어, 주로 식물의 종자 및 엽면 처리용으로 광범위하게 사용되고 있다. 그러나, 수생생물에 높은 독성을 야기하며, 인간 세포주에서 잠재적인 내분비 교란물질로 작용할 수 있는 위험요인이 있어 각국에서 잔류허용 기준량을 설정하여 관리하고 있다. 한편, 천연 피롤로마이신, 피오루테오린과 같은 화합물이 미생물에서 분리, 확인되었으며, 각각. 그람양성균에 대한 항생/항생물막 활성, 식물 병원 난균류 Pythium ultimum에 높은 항균활성을 갖는다. 본 총설은 여러 기능성 할로겐화 페닐피롤 유도체 중 세균 유래의 피롤니트린의 생합성에 관한 특징과 생산, 합성 플루디옥소닐의 특징, 그 외 천연 페닐피롤 유도체들의 특징등을 요약하였다. 우리는 다양한 천연 HPD의 미생물에 의한 생산과 화학합성법에 의한 다양한 합성 HPD의 개발을 통해 인간과 환경에서 높은 치료 효능과 안전성을 제공하는 새로운 HPD의 개발을 기대한다.

Brief Introduction of Research Progresses in Control and Biocontrol of Clubroot Disease in China

  • He, Yueqiu;Wu, Yixin;He, Pengfei;Li, Xinyu
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2015년도 춘계학술대회 및 임시총회
    • /
    • pp.45-46
    • /
    • 2015
  • Clubroot disease of crucifers has occurred since 1957. It has spread to the whole China, especially in the southwest and nourtheast where it causes 30-80% loss in some fields. The disease has being expanded in the recent years as seeds are imported and the floating seedling system practices. For its effective control, the Ministry of Agriculture of China set up a program in 2010 and a research team led by Dr. Yueqiu HE, Yunnan Agricultural University. The team includes 20 main reseachers of 11 universities and 5 institutions. After 5 years, the team has made a lot of progresses in disease occurrence regulation, resources collection, resistance identification and breeding, biological agent exploration, formulation, chemicals evaluation, and control strategy. About 1200 collections of local and commercial crucifers were identified in the field and by artificiall inoculation in the laboratories, 10 resistant cultivars were breeded including 7 Chinese cabbages and 3 cabbages. More than 800 antagostic strains were isolated including bacteria, stretomyces and fungi. Around 100 chemicals were evaluated in the field and greenhouse based on its control effect, among them, 6 showed high control effect, especially fluazinam and cyazofamid could control about 80% the disease. However, fluzinam has negative effect on soil microbes. Clubroot disease could not be controlled by bioagents and chemicals once when the pathogen Plasmodiophora brassicae infected its hosts and set up the parasitic relationship. We found the earlier the pathogent infected its host, the severer the disease was. Therefore, early control was the most effective. For Chinese cabbage, all controlling measures should be taken in the early 30 days because the new infection could not cause severe symptom after 30 days of seeding. For example, a biocontrol agent, Bacillus subtilis Strain XF-1 could control the disease 70%-85% averagely when it mixed with seedling substrate and was drenching 3 times after transplanting, i.e. immediately, 7 days, 14 days. XF-1 has been deeply researched in control mechanisms, its genome, and development and application of biocontrol formulate. It could produce antagonistic protein, enzyme, antibiotics and IAA, which promoted rhizogenesis and growth. Its The genome was sequenced by Illumina/Solexa Genome Analyzer to assembled into 20 scaffolds then the gaps between scaffolds were filled by long fragment PCR amplification to obtain complet genmone with 4,061,186 bp in size. The whole genome was found to have 43.8% GC, 108 tandem repeats with an average of 2.65 copies and 84 transposons. The CDSs were predicted as 3,853 in which 112 CDSs were predicted to secondary metabolite biosynthesis, transport and catabolism. Among those, five NRPS/PKS giant gene clusters being responsible for the biosynthesis of polyketide (pksABCDEFHJLMNRS in size 72.9 kb), surfactin(srfABCD, 26.148 kb, bacilysin(bacABCDE 5.903 kb), bacillibactin(dhbABCEF, 11.774 kb) and fengycin(ppsABCDE, 37.799 kb) have high homolgous to fuction confirmed biosynthesis gene in other strain. Moreover, there are many of key regulatory genes for secondary metabolites from XF-1, such as comABPQKX Z, degQ, sfp, yczE, degU, ycxABCD and ywfG. were also predicted. Therefore, XF-1 has potential of biosynthesis for secondary metabolites surfactin, fengycin, bacillibactin, bacilysin and Bacillaene. Thirty two compounds were detected from cell extracts of XF-1 by MALDI-TOF-MS, including one Macrolactin (m/z 441.06), two fusaricidin (m/z 850.493 and 968.515), one circulocin (m/z 852.509), nine surfactin (m/z 1044.656~1102.652), five iturin (m/z 1096.631~1150.57) and forty fengycin (m/z 1449.79~1543.805). The top three compositions types (contening 56.67% of total extract) are surfactin, iturin and fengycin, in which the most abundant is the surfactin type composition 30.37% of total extract and in second place is the fengycin with 23.28% content with rich diversity of chemical structure, and the smallest one is the iturin with 3.02% content. Moreover, the same main compositions were detected in Bacillus sp.355 which is also a good effects biocontol bacterial for controlling the clubroot of crucifer. Wherefore those compounds surfactin, iturin and fengycin maybe the main active compositions of XF-1 against P. brassicae. Twenty one fengycin type compounds were evaluate by LC-ESI-MS/MS with antifungal activities, including fengycin A $C_{16{\sim}C19}$, fengycin B $C_{14{\sim}C17}$, fengycin C $C_{15{\sim}C18}$, fengycin D $C_{15{\sim}C18}$ and fengycin S $C_{15{\sim}C18}$. Furthermore, one novel compound was identified as Dehydroxyfengycin $C_{17}$ according its MS, 1D and 2D NMR spectral data, which molecular weight is 1488.8480 Da and formula $C_{75}H_{116}N_{12}O_{19}$. The fengycin type compounds (FTCPs $250{\mu}g/mL$) were used to treat the resting spores of P. brassicae ($10^7/mL$) by detecting leakage of the cytoplasm components and cell destruction. After 12 h treatment, the absorbencies at 260 nm (A260) and at 280 nm (A280) increased gradually to approaching the maximum of absorbance, accompanying the collapse of P. brassicae resting spores, and nearly no complete cells were observed at 24 h treatment. The results suggested that the cells could be lyzed by the FTCPs of XF-1, and the diversity of FTCPs was mainly attributed to a mechanism of clubroot disease biocontrol. In the five selected medium MOLP, PSA, LB, Landy and LD, the most suitable for growth of strain medium is MOLP, and the least for strains longevity is the Landy sucrose medium. However, the lipopeptide highest yield is in Landy sucrose medium. The lipopeptides in five medium were analyzed with HPLC, and the results showed that lipopeptides component were same, while their contents from B. subtilis XF-1 fermented in five medium were different. We found that it is the lipopeptides content but ingredients of XF-1 could be impacted by medium and lacking of nutrition seems promoting lipopeptides secretion from XF-1. The volatile components with inhibition fungal Cylindrocarpon spp. activity which were collect in sealed vesel were detected with metheds of HS-SPME-GC-MS in eight biocontrol Bacillus species and four positive mutant strains of XF-1 mutagenized with chemical mutagens, respectively. They have same main volatile components including pyrazine, aldehydes, oxazolidinone and sulfide which are composed of 91.62% in XF-1, in which, the most abundant is the pyrazine type composition with 47.03%, and in second place is the aldehydes with 23.84%, and the third place is oxazolidinone with 15.68%, and the smallest ones is the sulfide with 5.07%.

  • PDF