• Title/Summary/Keyword: Secondary heating piping

Search Result 3, Processing Time 0.014 seconds

A Study on Improved Operation of Apartment Heating System in a Machine Room (공동주택 기계실 난방설비 운전 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • This study proposes an idea for energy saving in apartment machine rooms. A conventional district heating system is equipped with constant-flow pumps and bypass valves to regulate pump differential pressure. Each family unit is equipped with a constant-flow on/off valve. This leads to excessive hot water circulation and a high return temperature. To reduce energy loss, this study assumes that each family unit is renovated with a heating valve which regulates the return temperature at $35^{\circ}C$. The hot water supply pump is also replaced with a pump with an inverter to vary flow rate. Expected energy savings is then estimated from field test data. According to the results, pump electricity consumption was reduced by 6,100 kWh for a family unit building over about half a year. The supply temperature can also be lowered by $5^{\circ}C$, which can contribute to a production of electricity of 10.3 kWh/ton of hot water.

A Study on the Development of Long-term Self Powered Underground Pipeline Remote Monitoring System (자가 발전형 장기 지하매설배관 원격감시 장치 개발에 관한 연구)

  • Kim, Youngsear;Chae, Hyun-Byung;Seo, Jae-Soon;Chae, Soo-Kwon
    • Journal of the Korean Society for Environmental Technology
    • /
    • v.19 no.6
    • /
    • pp.576-585
    • /
    • 2018
  • Systematic management during the whole life cycle from construction to operation and maintenance is very important for the seven underground pipelines (waterworks, sewerage, electricity, telecommunications, gas, heating, oil including waterworks and sewerage). Especially, it is the construction process that affects the whole life cycle of underground buried pipeline. In order to construct a new city or to maintain different underground pipes, it is always necessary to dig the ground and carry out construction and related work. There is a possibility that secondary and tertiary breaks frequently occur in the pipeline construction process after the piping constructed first in this process. To solve this problem, a system is needed which can monitor damage in real time. However, the supply of electric power for continuous operation of the system is limited according to the environment of underground buried pipelines, so it is necessary to develop a stable electric power supply system using natural energy rather than existing electric power. In this study, we developed a system that can operate the pipeline monitoring system for long time (24 hours and 15 days) using natural energy using wind and solar light.