• Title/Summary/Keyword: Secondary formation

Search Result 890, Processing Time 0.023 seconds

Studies on the Formation and Stability of Colloids (II) : pH and Temperature Effects on the Secondary Micelle Formation of Sodium Deoxycholate

  • Park, Joon-Woo;Chung, He-Sson
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.118-122
    • /
    • 1987
  • The micelle formation of NaDC was studied by fluorometric and viscometric measurements. The thermodynamic parameters of the primary and secondary micellization of the bile salt were evaluated. The primary micelle formation was appeared to be an entropy driven process due to hydrophobic effect, while the major driving force for secondary micelle formation of the bile salt is the large negative enthalpy. The secondary micelle provides less hydrophobic environment to pyrene than the primary micelle does. The cooperative aggregation of primary micelles via hvdrogen bond formation was proposed for the secondary micelle formation.

Premature Stiffening of Cement Paste Caused by Secondary Gypsum and Syngenite Formation (False Set)

  • Chung, Chul-Woo;Lee, Jae-Yong
    • Architectural research
    • /
    • v.13 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • The purpose of this research is to investigate the effect of specific hydration reaction on the stiffening process of cement paste. The cement compositions are manipulated to cause specific hydration reactions (secondary gypsum and syngenite formation) responsible for false set, and the relationship between specific hydration reactions and the flow and stiffening behavior of cement paste were investigated using modified ASTM C 403 penetration resistance measurement and oscillatory shear rheology. X-ray powder diffraction (XRD) was used for the phase identification associated with premature stiffening of cement paste. Differential thermal analysis (DTA) and thermogravimetric analysis (TGA) were used for verification of syngenite formation. From the results, both secondary gypsum and syngenite formation caused faster stiffening and set. The amount of syngenite produced during 1 hour hydration was approximately 1 % of total mass of the cement paste, but cement paste with syngenite formation showed significantly accelerated stiffening behavior compared to normal cement paste.

Secondary Mineral Formation and Concrete Deterioration Caused by Certain Environmental Conditions (특정환경조건하에서의 콘크리트 내 이차광물생성과 그에 수반된 성능저하현상)

  • 이효민;황진연;진치섭;이진성;전쌍순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.651-656
    • /
    • 2003
  • Durability of concrete is possibly related to externally-induced chemical attacks in addition to internally-induced deterioration. Externally-induced chemical attacks can be derived from various sources according to environmental conditions under which concrete structures are existing. The present study investigates the characteristic concrete deterioration and formation of secondary minerals by external chemical attacks under certain environmental condition. Petrographic microscope, SEM, EDAX, XRD analyses were conducted to identify secondary mineral formation and micro-structural analyses.

  • PDF

Comparison of Adventitious Shoot Formation in Petiole Explant Cultures of 20 Cultivars of Catharanthus roseus

  • Lee, Soo-Young;Park, Pil-Son;Chung, Hwa-Jee;In, Dong-Soo;Park, Dong-Woog;Jang R. Liu
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.59-61
    • /
    • 2003
  • Petiole explants from 20 cultivars of Catharanthus roseus were cultured on various shoot-inducing media to assess their competence for adventitious shoot formation. After eight weeks of culture on Murashige and Skoog' s medium supplemented with 4.4 $\mu\textrm{m}$6-benzyladenine and 0.5 $\mu\textrm{m}$ $\alpha$-naphthaleneacetic acid, petiole explants from 'Cooler Icy Pink' exhibited the greatest frequency of adventitious shoot formation at 40%, which was followed by 'Little Bright Eye'. By comparing with a previous study on assessment of competence for adventitious shoot formation in hypocotyl explant cultures of various cultures, it is indicated that the relative degree of their competence among cultivars varies to the organ used for the source of explant. Excised adventitious shoots were readily rooted on half-strength MS basal medium. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.

참당귀 뿌리 배양에 있어서 root segmentation과 식물생장조절제가 뿌리 생장과 decursinol angelate 생산에 미치는 영향

  • Kim, Ji-Yeon;Jo, Ji-Suk;Jo, Jong-Mun;Lee, Yong-Il;Kim, Ik-Hwan;Kim, Dong-Il
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.305-308
    • /
    • 2002
  • Decursinol angelate, a new anticancer agent, was produced by root cultures of Angelica gigas Nakai. In addition, difference of specific yields between primary and secondary root was investigated. It was found that specific yield of secondary root was much higher than that of primary root at various conditions, so that it was thought that the formation and growth of secondary root were feasible. From this point of view, effects of root segmentation and plant growth regulators (NAA, IBA) on root morphology and decursinol angelate production were examined. Root segmentation increased secondary root mass and product formation. On the other hand, addition of NAA or IBA at various concentrations promoted secondary root formation and production of decursinol angelate significantly. Five-fold increase of production was obtained at 4 mg/L of IBA compared to control without NAA and IBA.

  • PDF

An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Chung, Jin-Do;Han, Ji-Woong;Ahn, Kook-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor (다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구)

  • Han, Ji-Woong;Ahn, Kook-Young;Kim, Han-Seok;Chung, Jin-Do;Park, Kyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

Analysis of cooling phenomenon of water with the supercooled (과냉각을 동반한 순수물의 냉각현상 해석)

  • Chu, Mi-Seon;Yun, Jeong-In;Kim, Jae-Dol;Kamata, Yoshinobu;Kato, Toyofumi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.862-872
    • /
    • 1997
  • Ice formation in a horizontal circular cylinder has been studied numerically. From the numerical analysis results, it was found that there were three types of freezing pattern and that freezing phenomenon was affected largely by density inversion and cooling rate. The type of freezing pattern largely depends on the secondary flow which is generated by density inversion. When supercooling energy is released before the development of the secondary flow, the annular ice layer grows. If the energy is released when the secondary flow is considerably developed and the supercooled region is removed to the upper half part of the cylinder, an asymmetric ice layer grows. And if the energy is released after perfect development of the secondary flow, instantaneous dendritic ice formation over the full region occurs. Furthermore, this secondary flow was found to have an effect on heat transfer characteristics. The heat transfer rate becomes small at the instant when the secondary flow is generated, but becomes large with the development of the flow. It's concluded that for the facilitation of heat transfer it is desirable to keep water in liquid phase until the secondary flow is perfectly developed. This study gave an instruction of performance improvement of capsule type ice storage tank.

Molecular Biology of Secondary Growth

  • Han, Kyung-Hwan
    • Journal of Plant Biotechnology
    • /
    • v.3 no.2
    • /
    • pp.45-57
    • /
    • 2001
  • Trees have the ability to undergo secondary growth and produce a woody body. This tree-specific growth is affected by the secondary vascular system and the developmental continuum of secondary phloem and xylem. Secondary growth is one of the most important biological processes on earth. Considering its economic and environmental significance, our knowledge of tree growth and development is surprisingly limited. Trees have received little attention as model species in plant science, as most Plant biology questions can be best addressed by using herbaceous model species, such as Arabidopsis. Furthermore, tree biology is difficult to study mainly due to the inherent problems of tree species, including large size, long generation time, large genome size, and recalcitrance to biotechnological manipulations. Despite all of this, one must rely on trees as models to study tree-specific questions, such as secondary growth, which cannot be studied effectively in non-woody model species. Recent advances in genomics technology provide a unique opportunity to overcome these inherent tree-related problems. Several groups, including our own, have been successful in studying the biology of wood formation with a variety of hardwood and softwood species. In this article, 1 first review the current understanding of tree growth and then discuss the recent attempts to fully explore and realize the potential of molecular biology as a tool for enhanced understanding of secondary growth.

  • PDF

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • v.24 no.1
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.