• Title/Summary/Keyword: Secondary exposure dose

Search Result 45, Processing Time 0.021 seconds

Reference dose levels for dental panoramic radiography in Anyang City (안양시에서 치과용 파노라마방사선사진의 참고 선량 수준)

  • Kim, Young-Hee;Lee, Jae-Seo;Yoon, Suk-Ja;Kang, Byung-Cheol
    • Imaging Science in Dentistry
    • /
    • v.39 no.4
    • /
    • pp.199-203
    • /
    • 2009
  • Purpose : To measure dose-width product (DWP) values used for dental panoramic radiography in Anyang city, Korea. Materials and Methods : Thirty-six panoramic dental radiographic sets (17 analogue panoramic sets and 19 digital panoramic sets) in 36 dental clinics in Anyang city were included in the study. Each patient's panoramic exposure parameters were simulated and the panoramic radiation doses were measured at the secondary collimator using a Mult-O-Meter (Unfors Instruments, Billdal, Sweden) at each dental clinic during 2006. The third quartile DWP was determined from 310 surface dose measurements on adult. Results : The third quartile DWP for adult panoramic radiograph was 106.7 mGy mm. For analogue and digital panoramic radiograph, 3/4 DWP were 116.8 mGy mm and 72 mGy mm respectively. The overall third quartile DWP of panoramic radiography was 106.7 mGy mm. Conclusion : The measured 3/4 DWPs were higher than the 3/4 DWP of 65 mGy mm recommended by NRPB. Dentists who are operating above the reference dose should lower their panoramic exposure doses below the recommended reference value by changing the exposure parameters and/or their panoramic equipments.

  • PDF

A Study on Dose Reduction in Infant Skull Radiography (유아 두개골 방사선촬영에서 피폭선량 감쇄에 관한 연구)

  • Ahn, Byoung-Ju
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.5
    • /
    • pp.387-392
    • /
    • 2017
  • When an infant has visited a hospital due to skull fracture, the rupture of a blood vessel, or skin wounds on the head resulted from an incident, accident, traffic accident, or disease, he/she becomes to undergo anterior/posterior and lateral skull imaging, which is a head test at the department of radiology. In the head test, if the adult skull imaging grid is applied to the imaging, the secondary radiation will be removed to enhance the contrast of the image. However, among the radiation exposure conditions, the tube voltage should be enhanced by 8~10 kVp leading to an increase in the patient exposure. The present study was conducted under assumption that if the same images can be obtained from infant skull imaging without using the skull imaging grid, the exposure dose will be reduced and the artifacts due to grid cut off can be prevented. The researcher measured the radiation dosage using a radiation meter and conducted the subjective evaluation (ROC, receiver operating characteristic) among medical image evaluation methods. Based on the results, when the images were taken without using the grid, the exposure dose was reduced by 0.019 mGy in the anterior/posterior imaging and by 0.02 mGy in the lateral imaging and the image evaluation score was higher by 4 points. In conclusion, if the images of the skulls of infants that visited the hospital are taken with out using the grid, the exposure dose can be reduced, the image artifacts due to grid cut off can be prevented, and the lifespan of the X-ray tube will be extended.

Consideration on Shielding Effect Based on Apron Wearing During Low-dose I-131 Administration (저용량 I-131 투여시 Apron 착용여부에 따른 차폐효과에 대한 고찰)

  • Kim, Ilsu;Kim, Hosin;Ryu, Hyeonggi;Kang, Yeongjik;Park, Suyoung;Kim, Seungchan;Lee, Guiwon
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.1
    • /
    • pp.32-36
    • /
    • 2016
  • Purpose In nuclear medicine examination, $^{131}I$ is widely used in nuclear medicine examination such as diagnosis, treatment, and others of thyroid cancer and other diseases. $^{131}I$ conducts examination and treatment through emission of ${\gamma}$ ray and ${\beta}^-$ ray. Since $^{131}I$ (364 keV) contains more energy compared to $^{99m}Tc$ (140 keV) although it displays high integrated rate and enables quick discharge through kidney, the objective of this study lies in comparing the difference in exposure dose of $^{131}I$ before and after wearing apron when handling $^{131}I$ with focus on 3 elements of external exposure protection that are distance, time, and shield in order to reduce the exposure to technicians in comparison with $^{99m}Tc$ during the handling and administration process. When wearing apron (in general, Pb 0.5 mm), $^{99m}Tc$ presents shield of over 90% but shielding effect of $^{131}I$ is relatively low as it is of high energy and there may be even more exposure due to influence of scattered ray (secondary) and bremsstrahlung in case of high dose. However, there is no special report or guideline for low dose (74 MBq) high energy thus quantitative analysis on exposure dose of technicians will be conducted based on apron wearing during the handling of $^{131}I$. Materials and Methods With patients who visited Department of Nuclear Medicine of our hospital for low dose $^{131}I$ administration for thyroid cancer and diagnosis for 7 months from Jun 2014 to Dec 2014 as its subject, total 6 pieces of TLD was attached to interior and exterior of apron placed on thyroid, chest, and testicle from preparation to administration. Then, radiation exposure dose from $^{131}I$ examination to administration was measured. Total procedure time was set as within 5 min per person including 3 min of explanation, 1 min of distribution, and 1 min of administration. In regards to TLD location selection, chest at which exposure dose is generally measured and thyroid and testicle with high sensitivity were selected. For preparation, 74 MBq of $^{131}I$ shall be distributed with the use of $2m{\ell}$ syringe and then it shall be distributed after making it into dose of $2m{\ell}$ though dilution with normal saline. When distributing $^{131}I$ and administering it to the patient, $100m{\ell}$ of water shall be put into a cup, distributed $^{131}I$ shall be diluted, and then oral administration to patients shall be conducted with the distance of 1m from the patient. The process of withdrawing $2m{\ell}$ syringe and cup used for oral administration was conducted while wearing apron and TLD. Apron and TLD were stored at storage room without influence of radiation exposure and the exposure dose was measured with request to Seoul Radiology Services. Results With the result of monthly accumulated exposure dose of TLD worn inside and outside of apron placed on thyroid, chest, and testicle during low dose $^{131}I$ examination during the research period divided by number of people, statistics processing was conducted with Wilcoxon Signed Rank Test using SPSS Version. 12.0K. As a result, it was revealed that there was no significant difference since all of thyroid (p = 0.345), chest (p = 0.686), and testicle (p = 0.715) were presented to be p > 0.05. Also, when converting the change in total exposure dose during research period into percentage, it was revealed to be -23.5%, -8.3%, and 19.0% for thyroid, chest, and testicle respectively. Conclusion As a result of conducting Wilcoxon Signed Rank Test, it was revealed that there is no statistically significant difference (p > 0.05). Also, in case of calculating shielding rate with accumulate exposure dose during 7 months, it was revealed that there is irregular change in exposure dose for inside and outside of apron. Although the degree of change seems to be high when it is expressed in percentage, it cannot be considered a big change since the unit of accumulated exposure dose is in decimal points. Therefore, regardless of wearing apron during high energy low dose $^{131}I$ administration, placing certain distance and terminating the administration as soon as possible would be of great assistance in reducing the exposure dose. Although this study restricted $^{131}I$ administration time to be within 5 min per person and distance for oral administration to be 1m, there was a shortcoming to acquire accurate result as there was insufficient number of N for statistics and it could be processed only through non-parametric method. Also, exposure dose per person during lose dose $^{131}I$ administration was measured with accumulated exposure dose using TLD rather than through direct-reading exposure dose thus more accurate result could be acquired when measurement is conducted using electronic dosimeter and pocket dosimeter.

  • PDF

An Analysis of Exposure Dose on Hands of Radiation Workers using a Monte Carlo Simulation in Nuclear Medicine (몬테카를로 모의 모사를 이용한 핵의학과 방사선작업종사자의 손에 대한 피폭선량 분석)

  • Jang, Dong-Gun;Kang, Sesik;Kim, Junghoon;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • Workers in nuclear medicine have performed various tasks such as production, distribution, preparation and injection of radioisotope. This process could cause high radiation exposure to wokers' hand. The purpose of this study was to investigate shielding effect for r-rays of 140 and 511 keV by using Monte-carlo simulation. As a result, it was effective, regardless of lead thickness for radiation shielding in 140 keV r-ray. However, it was effective in shielding material with thickness of more than only 1.1 mm in 511keV r-ray. And also it doesn't effective in less than 1.1 mm due to secondary scatter ray and exposure dose was rather increased. Consequently, energy of radionuclide and thickness of shielding materials should be considered to reduce radiation exposure.

Statistical Analysis Using Living Radiation Survey Data on Processed Products (가공제품에 대한 생활주변방사선 실태조사 자료를 활용한 통계분석)

  • Choi, Kyoungho;Cho, Jung Keun
    • Journal of radiological science and technology
    • /
    • v.43 no.2
    • /
    • pp.123-128
    • /
    • 2020
  • Radiation Following the 2011 Fukushima nuclear accident in Japan, public interest and anxiety about radiation safety increased, and vague anxiety about commonly exposed living radiation was generated. The Atomic Energy Safety Commission has been conducting a survey of processed products that advertise "negative ions" and "far-infrared" emissions under the Living Radiation Safety Management Act. In this study, in-depth analysis was performed from a statistical point of view using the measurement data presented in the Nuclear Safety Committee's actual survey analysis report as secondary data. As a result, there was a statistically significant difference (p<0.005) between latex and civil affairs products. There were also statistically significant differences (p<0.05) in the results of testing whether there were significant differences in the annual exposure dose between groups after categorizing 71 civil products, including radon beds, into bed, bedding, and living and other categories. The correlation analysis results also confirm that, as is commonly known, the annual doses received from processed products are associated with radon derived from U-238 and Th-232.

Radiation Dose Measurement and Model Comparison at the Flight Level (비행고도 상에서의 우주방사선 관측 및 모델 비교)

  • Yi, Wonhyeong;Kim, Jiyoung;Jang, Kun-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

The Measurement and Analysis by Free Space Scatter Dose Distribution of Diagnostic Radiology Mobile Examination Area (영상의학과 이동검사 영역의 공간선량 분포에 대한 측정 및 분석)

  • Kim, Sung-Kyu;Son, Sang-Hyuk
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.1
    • /
    • pp.5-13
    • /
    • 2009
  • There are several reasons to take X-ray in case of inpatients. Some of them who cannot ambulate or have any risk if move are taken portable X-ray at their wards. Usually, in this case, many other people-patients unneeded X-ray test, family, hospital workers etc-are indirectly exposed to X-ray by scatter ray. For that reason I try to be aware of free space scatter dose accurately and make the point at issue of portable X-ray better in this study. kVp dose meter is used for efficiency management of portable X-ray equipment. Mobile X-ray equipment, ionization chamber, electrometer, solid water phantom are used for measuring of free space scatter dose. First of all the same surroundings condition is made as taken real portable X-ray, inquired amount of X-ray both chest AP and abdomen AP most frequently examined and measured scatter ray distribution of two tests individually changing distance. In the result of measuring horizontal distribution with condition of chest AP it is found that the mAs is decreased as law of distance reverse square but no showed mAs change according to direction. Vertical distribution showed the mAs slightly higher than horizontal distribution but it isnt found out statistical characteristic. In abdomen AP, compare with chest AP, free space scatter dose is as higher as five-hundred times and horizontal, vertical distribution are quite similar to chest AP in result. In portable X-ray test, in order to reduce the secondary exposure by free space scatter dose first, cut down unnecessary portable order the second, set up the specific area at individual ward for the test the third, when moving to a ward for the X-ray test prepare a portable shielding screen. The last, expose about 2m apart from patients if unable to do above three ways.

  • PDF

Correlation between UV-dose and Shrinkage amounts of Post-curing Process for Precise Fabrication of Dental Model using DLP 3D Printer (DLP 공정을 이용한 정밀 치아모델 제작에서 UV 조사량과 후경화 수축률의 상관관계 분석)

  • Shin, Dong-Hun;Park, Young-Min;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • Nowadays, additive manufacturing (AM) technology is a promising process to fabricate complex shaped devices applied in medical and dental services. Among the AM processes, a DLP (digital light processing) type 3D printing process has some advantages, such as high precision, relatively low cost, etc. In this work, we propose a simple method to fabricate precise dental models using a DLP 3D printer. After 3D printing, a part is commonly post-cured using secondary UV-curing equipment for complete polymerization. However, some shrinkage occurs during the post-curing process, so we adaptively control the UV-exposure time on each layer for over- or under-curing to change the local shape-size of a part in the DLP process. From the results, the shrinkage amounts in the post-curing process vary due to the UV-dose in 3D printing. We believe that the proposed method can be utilized to fabricate dental models precisely, even with a change of the 3D CAD model.

A New Radiation-Shielding Device for Restraining Veterinary Patients

  • Songyi Kim;Minju Lee;Miju Oh;Yooyoung Lee;Jiyoung Ban;Jiwoon Park;Sojin Kim;Uhjin Kim;Jaepung Han;Dongwoo Chang
    • Journal of Veterinary Clinics
    • /
    • v.40 no.6
    • /
    • pp.429-437
    • /
    • 2023
  • In veterinary medicine, most radiographic images are obtained by restraining patients, inevitably exposing the restrainer to secondary scattered radiation. Radiation exposure can result in stochastic reactions such as cancer and genetic effects, as well as deterministic reactions such as skin burns, cataracts, and bone marrow suppression. Radiation-shielding equipment, including aprons, thyroid shields, eyewear, and gloves, can reduce radiation exposure. However, the risk of radiation exposure to the upper arms, face, and back remains, and lead aprons and thyroid shields are heavy, restricting movement. We designed a new radiation-shielding system and compared its shielding ability with those of conventional radiation-shielding systems. We hypothesized that the new shielding system would have a wider radiation-shielding range and similar shielding ability. The radiation exposure dose differed significantly between the conventional and new shielding systems in the forehead, chin, and bilateral upper arm areas (p < 0.001). When both systems were used together, the radiation-shielding ability was better than when only one system was used at all anatomical locations (p < 0.01). This study suggests that the new radiation-shielding system is essential and convenient for veterinary radiation workers because it is a step closer to radiation safety in veterinary radiography.

Comparison of Three Dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy and Volumetric Modulated Arc Therapy for Low Radiation Exposure of Normal Tissue in Patients with Prostate Cancer

  • Cakir, Aydin;Akgun, Zuleyha;Fayda, Merdan;Agaoglu, Fulya
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.8
    • /
    • pp.3365-3370
    • /
    • 2015
  • Radiotherapy has an important role in the treatment of prostate cancer. Three-dimensional conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) techniques are all applied for this purpose. However, the risk of secondary radiation-induced bladder cancer is significantly elevated in irradiated patients compared surgery-only or watchful waiting groups. There are also reports of risk of secondary cancer with low doses to normal tissues. This study was designed to compare received volumes of low doses among 3D-CRT, IMRT and VMAT techniques for prostate patients. Ten prostate cancer patients were selected retrospectively for this planning study. Treatment plans were generated using 3D-CRT, IMRT and VMAT techniques. Conformity index (CI), homogenity index (HI), receiving 5 Gy of the volume (V5%), receiving 2 Gy of the volume (V2%), receiving 1 Gy of the volume (V1%) and monitor units (MUs) were compared. This study confirms that VMAT has slightly better CI while thev olume of low doses was higher. VMAT had lower MUs than IMRT. 3D-CRT had the lowest MU, CI and HI. If target coverage and normal tissue sparing are comparable between different treatment techniques, the risk of second malignancy should be a important factor in the selection of treatment.