• 제목/요약/키워드: Secondary Wall

검색결과 442건 처리시간 0.029초

LAS Advanced & WRC 웹로그 분석을 활용한 ESM에 관한 연구 (Research about Asynchronous LAS Advanced & WRC Weblog Analysis of Practical use ESM)

  • 우승호;강순덕
    • 정보학연구
    • /
    • 제7권4호
    • /
    • pp.9-20
    • /
    • 2004
  • 본 연구에서는 일차적으로 현재 네트워크에서 심각한 문제 우해바이러스를 해결하기 우해서 VirusWall을 실험해본 결과 Dos를 막을 정도 밖에 안되고 이 문제를 해결하기 위해서 이차적으로 ESM, CIS와 MIS면으로 지능화된 인터넷과 Multiple Protocol 등 상황에 맞는 대처를 하도록 로그 분석시스템을 구현하였다. 결과적으로 ESM의 다양한 해킹과 바이러스에 대응하기 위한 지능적인 전사적 보안관리 시스템과 CIS를 이용하기 때문에 정보보호 측면에 폭넓게 이용할 수 있게 되었고, Site Design, Packet 전송별로 클릭할 수 있고, 내부 인터넷(GroupWare)까지 사용되었으며, Smart View를 통해서 전체적인 웹과 보안의 관계도 모니터링 할 수 있게 되었다.

  • PDF

스러스트 볼 베어링이 적용된 왕복동형 압축기의 마찰손실 해석 (Frictional Loss Analysis of a Reciprocating Compressor with Thrust Ball Bearing)

  • 김태종
    • Tribology and Lubricants
    • /
    • 제27권2호
    • /
    • pp.101-108
    • /
    • 2011
  • In this paper, a study on the frictional losses and dynamic behaviors of a reciprocating compression mechanism used in small refrigeration compressor is performed. In the problem formulation of the compressor dynamics, the viscous frictional force between piston and cylinder wall is considered in order to determine the coupled dynamic behaviors of piston and crankshaft supported on a thrust ball bearing. The solutions of the equations of motion of the reciprocating mechanism along with the time dependent Reynolds equations for the lubricating film between piston and cylinder wall and lubricant films of the journal bearings are obtained simultaneously. The hydrodynamic forces of journal bearings are calculated using finite bearing model and G$\hat{u}$m-bel boundary condition. And, a Newton-Raphson procedure was employed in solving the nonlinear equations of piston and crankshaft with a thrust ball bearing. The results explored the effects of design parameters on the frictional losses and dynamic stability of the compression mechanism.

입자영상유속계와 컴퓨터 시뮬레이션을 이용한 분기관내 유동해석 (Flow Analyses in the Bifurcated Duct with PIV System and Computer Simulation)

  • 서상호;최을;노형운;도덕희
    • 대한기계학회논문집B
    • /
    • 제23권1호
    • /
    • pp.123-130
    • /
    • 1999
  • The objective of the current study is to understand steady 3-dimensional flow phenomena in a bifurcated duct experimentally. A bifurcation model is fabricated with transparent acrylic resin to visualize the whole flow field with the PIV system. The gray level cross-correlation method is applied to the image processing algorithm. The subpixel and the area interpolation methods are used to obtain the final velocity vectors. The finite volume predictions are used to analyze the flow patterns in the bifurcation model. The results of the computer simulation and the PIV experiment for three-dimensional flow show the recirculation zone and the formation of the paired secondary flow distal to the apex of the bifurcation model. The results obtained with the two methods also show that the branch flow strongly strikes the inner wall due to the inertial effect and accompanied helical motion as it flows toward the outer wall.

곡관내의 주유동에 분사되는 난류제트에 대한 3차원 국소타원형 수치해석 (3-Dimensional Locally Elliptic Numerical Predictions of Turbulent Jet in a Crossflow In A Curved Duct)

  • 정형호;이택식;이준식
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.470-483
    • /
    • 1990
  • Turbulent jet in a crossflow, issuing from a row of holes on a convex surface of 90 .deg. bend duct, is predicted by a 3-dimensional numerical method. The Cartesian coordinate system in adopted in upstream and downstream tangents and the cylindrical polar coordinate system in curved region. The Reynolds stresses and heat fluxes are obtained from a standard k-e model in the core region and van Driest model in the vicinity of the wall. The governing equations are discretized by a finite volume method and solutions are obtained by a locally elliptic calculation procedure. Pressure and convective terms are treated by SIMPLE algorithm and hybrid scheme respectively. A vortex initially induced by the injected jet has been built up due to the interaction with the secondary flow caused by pressure gradient and centrifugal force. The vortex structure has a strong influence on the wall cooling effectiveness. Another vortex like horseshoe is formed in the vicinity of the injection hole and its strength is getting weak as it moves downward.

제트충돌냉각되는 반원 오목면에서 열전달 및 유체유동에 관한 실험적 연구 (An Experimental Study on Heat Transfer and Fluid Flow on the Semi-Circular Concave Surface Cooled by Jet Impingement)

  • 유한성;양근영;이준식
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2991-3006
    • /
    • 1996
  • An experimental study of jet flow and heat transfer has been carried out for the jet impingement cooling on a semi-circular concave surface. For the jet impingement on the concave surface, three different regions-free jet region, stagnation region, and wall jet flow region-exist, and the distributions of mean velocity and fluctuating velocity for each region have been measured by Laser Doppler Velocimeter. Of particular interests are the effects of jet Reynolds number, the distance between the nozzle exit and cooling surface apex, and the distance from the stagnation point in the circumferential direction. The resulting characteristics of heat transfer at the stagnation point and the variation of heat transfer along the circumferential direction including the existence of secondary peak have been explained in conjunction with measured impinge jet flow.

비대칭 입구조건을 갖는 정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (Heat/Mass Transfer and Flow Characteristics within a Film Cooling Hole of Square Cross Sections with Asymmetric Inlet Flow Condition)

  • 이동호;강승구;조형희
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.14-21
    • /
    • 2001
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet flow conditions. The asymmetric inlet flow condition is achieved by making distances between side walls of secondary flow duct and film cooling hole different; one side wall is $2D_h$ apart from the center of film cooling hole, while the other side wall is $1.5D_h$ apart from the center of film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the flow field has been analyzed by numerical calculation using a commercial code. Swirl flow is generated at the inlet region and the heat/mass transfer pattern with the asymmetric inlet flow condition is changed significantly from that with the symmetric condition. At the exit region, the effect of mainstream on the inside hole flow is reduced with asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl flow generated by the asymmetric inlet condition.

  • PDF

정사각 막냉각홀 내부에서의 열/물질전달 및 유동 특성 (II) - 비대칭 입구조건 효과 - (Heat/Mass Transfer and Flow Characteristics Within a Film Cooling Hole of Square Cross Sections (II) - Effects of Asymmetric Inlet Flow Condition -)

  • 이동호;강승구;조형희
    • 대한기계학회논문집B
    • /
    • 제26권7호
    • /
    • pp.937-944
    • /
    • 2002
  • An experimental study has been conducted to investigate the heat/mass transfer characteristics within a square film cooling hole with asymmetric inlet now condition. The asymmetric inlet now condition is achieved by making distances between side walls of the secondary now duct and the film cooling hole different; one side wall is $2D_h$ apart from the center of the film cooling hole, while the other side wall is $1.5D_h$ apart from the center of the film cooling hole. The heat/mass transfer experiments for this study have been performed using a naphthalene sublimation method and the now field has been analyzed by numerical calculation using a commercial code. Swirl now is generated at the inlet region and the heat/mass transfer pattem with the asymmetric inlet now condition is changed significantly from that with the symmetric condition. In the exit region, the effect of mainstream on the inside hole now is reduced with the asymmetric condition. The average heat/mass transfer coefficient is higher than that with the symmetric condition due to the swirl now generated by the asymmetric inlet condition.

유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석 (Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion)

  • 조종철;김윤일;최석기
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

PIV와 수치해석을 이용한 분지관내 맥동유동의 가시화 (Flow Visualization of Pulsatile Flow in a Branching Tube using the PIV System and Numerical Analysis)

  • 노형운;서상호;유상신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.535-540
    • /
    • 2000
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCD camera for the image processing. The cross-correlation method in combination with the moving searching area algorithm was applied for the image processing of the flow visualization. The pulsatile flow fields were visualized effectively by the PIV system in conjunction with the applied algorithm. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

생체내 혈관조형술을 이용한 관상동맥의 3차원 형상화 및 혈류특성 해석 (Three-Dimensional Model Construction and Blood Flow Analysis of Coronary Artery using In-vivo Angiography)

  • 노형운;서상호;권혁문;이병권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.753-758
    • /
    • 2003
  • The purpose of the present study was to establish the mechanism of the generation of atherosclerosis by analyzing the hemodynamic variables in the coronary artery where atherosclerosis occurs frequently. From the previous results, the stenosis phenomena due to atherosclerosis were related to not only biochemical reaction between blood and blood vessel but also the hemodynamic factors like flow separation and oscillatory wall shear stress. The present study aimed to investigate the causes of the generation and progression of atherosclerosis in the coronary artery. This study also aimed to develop the softwares which generate automatically three dimensional vascular models obtained by the angiogram images and the computer vision techniques. In the present study, the flow patterns for full three-dimensional hemodynamic characteristics were analyzed. To understand the three-dimensional hemodynamic characteristics, the wall shear stress distributions and secondary flows were investigated quantitatively.

  • PDF