• Title/Summary/Keyword: Secondary Wall

Search Result 443, Processing Time 0.026 seconds

Secondary flows through an impeller of centrifugal compressor at design and off-design conditions (설계점 및 탈설계점에서의 원심압축기 회전차 내부 2차유동)

  • Choe, Yeong-Seok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3573-3588
    • /
    • 1996
  • The flow through a centrifugal compressor impeller was calculated using the 3-dimensional Navier-Stokes solution method. A control volume method based on a rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. Numerical results and experimental data were compared for the overall performance of the impeller, the pressure distributions along the shroud wall and the detailed flowfields at the design and off-design conditions, which showed good coincidence. The flow through the impeller is complex with the curvature of the streamlines and rotation. The development of secondary flows and the jet-wake flow characteristics, which is the main source of flow loss, was discussed. Calculation results show quite different patterns as the flow rate changes.

Studies on the Improvement of Butt Welding Characteristic of Polyethylene Pipes using an Advanced Heat Plate (PE 이중벽관 융착시 열판 형상에 따른 PE 파이프의 용접성에 관한 연구)

  • Gang, Chang-Gu;Kim, Jae-Seong;An, Dae-Hwan;Lee, Gyeong-Cheol;Hwang, Ung-Gi;Lee, Bo-Yeong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.276-278
    • /
    • 2007
  • Many processes have been introduced to join PE pipes, but most of these methods have lots of disadvantages such as costs and lack of reliability, etc. Recently due to the benefits of cost, safety and reliability, the but welding has been paid much attention to join PE pipes. In case of butt welding, the heat plate which is used to melt PE pipes is the most critical equipment. In this study, after designed secondary developed heat plate of new shape, the PE double wall pipes were but-welding by using the developed heat plate and secondary developed heat plate and comparison of weld-zones and tensile test were performed. As results of tensile test, tensile strengths using secondary developed heat plate were measured higher $1.17{\sim}1.5$ than using developed heat plate.

  • PDF

Gibberellins enhance plant growth and ginsenoside content in Panax ginseng

  • Hong, Chang Pyo;Jang, Gwi Yeong;Ryu, Hojin
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.186-192
    • /
    • 2021
  • The roots of Korean ginseng (Panax ginseng) have a long history of usage as a medicinal drug. Ginsenosides, a group of triterpenioid saponins in ginseng, have been reported to show important pharmacological effects. Many studies have attempted to identify the ginsenoside synthesis pathways of P. ginseng and to increase crop productivity. Recent studies have shown that exogenous gibberellin (GA) treatments promote storage root secondary growth by integration of the modulating cambium stem cell homeostasis with a secondary cell wall-related gene network. However, the dynamic regulation of ginsenoside synthesis-related genes and their contents by external signaling cues has been rarely evaluated. In this study, we confirmed that GA treatment not only enhanced the secondary growth of P. ginseng storage roots, but also significantly enriched the terpenoid biosynthesis process in RNA-seq analysis. Consistently, we also found that the expression of most genes involved in the ginsenoside synthesis pathways, including those encoding methylerythritol-4-phosphate (MEP) and mevalonate (MVA), and the saponin content in both leaves and roots was increased by exogenous GA application. These results can be used in future development of biotechnology for ginseng breeding and enhancement of saponin content.

The Feasibility Study on a High-Temperature Application of the Magnetostrictive Transducer Employing a Thin Fe-Co Alloy Patch

  • Heo, Tae-Hoon;Park, Jae-Ha;Ahn, Bong-Young;Cho, Seung-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.3
    • /
    • pp.278-286
    • /
    • 2011
  • The on-line monitoring for the wall thinning in secondary system has been considered one of main issues for the safety of nuclear power plants. To establish the on-line monitoring technique for the pipe wall thinning, the development of the ultrasonic transducer working in high-temperature is very important. In this investigation, the magnetostrictive transducer is concerned for high temperature condition up to $300^{\circ}C$. The magnetostrictive transducer has many advantages such as high working temperature, durability, cost-effectiveness, and shear waves, most of all. A thin Fe-Co alloy patch whose Curie temperature is over $900^{\circ}C$ was employed as a ferromagnetic material for magnetostriction. Wave transduction experiments in various temperature were carried out and the effect of bias magnets was considered together with the dry coupling performance of the transducer. From experimental results, consequently, it was found that the magnetostrictive transducer works stable even in high temperature up to $300^{\circ}C$ and can be a promising method for the on-line monitoring of the wall thinning in nuclear power plants.

The Biology of Phenolic Containing Vesicles

  • Schoenwaelder, Monica E.A.
    • ALGAE
    • /
    • v.23 no.3
    • /
    • pp.163-175
    • /
    • 2008
  • Phenolic compounds play a major role in the interaction of plants with their environment. They are thought to have been a feature of higher plants since early colonization of the land. Phenolics are crucial for many important aspects of plant life. They can play structural roles in different supporting or protective tissues, for example in cell walls, they can be involved in defence strategies, and signalling properties particularly in the interactions between plants and their environment. In brown algae, phenolic compounds are contained within membrane bound vesicles known as physodes, and their roles in algae are thought to be similar to those of higher plant phenolics. They can be stained using various histochemical stains, however, none of these stains are phenolic specific so care must be taken during interpretation of such results. Many, but not all phenolics are also autofluorescent under UV or violet light. Physodes are involved in cell wall construction, both in primary and secondary walls in brown algae. They bind together with other wall components to make a tough wall. They have also been found to play a role at fertilization, in blocking polyspermy in some species. Sperm are very quickly rendered immobile after phenolic release from newly fertilized zygotes seconds after fertilization. Phenolic compounds are thought to be important herbivore deterrents in some species due to their astringent nature. Phenolic compounds also offer effective UV protection in the early life stages and also the adults of many algal species. In the future, this factor may also make them an important player in the pharmaceutical and skincare industries.

Visualization of Three-Dimensional Pulsatile Flow in a Branching Model using the High-Resolution PIV System (고해상 PIV시스템을 이용한 분지관내3차원 맥동유동 가시화)

  • Roh, Hyung-Woon;Suh, Sang-Ho;Choi, Jin-Yong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.765-768
    • /
    • 2003
  • The objective of the present study was to visualize the pulsatile flow field in a branching model by using the high-resolution PIV system. A bifurcated flow system was built for the experiments in the pulsatile flow. Harvard pulsatile pump was used to generate the pulsatile velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow fields. Two consecutive particle images at several cross sections of the flow filed were captured by the CCD cameras ($1K{\ast}1K$ and $640{\ast}480$). The results after the image processing clearly showed the recirculation zones and the formation of the paired secondary flows from the distal to the apex in the bifurcated model. The results also indicated that the flow velocities in the inner wall moved faster than those in the outer wall due to the inertial force effects and the helical motions generated in the branch flows as the flow proceeded toward the outer wall. While the PIV images from the $1K{\ast}1K$ camera were closer to the simulation results thantheimagesfromthe640${\ast}$480camera,bothresultsofthePIVexperimentsusingthetwocamerasgenerallyagreed quitewellwiththeresultsfromthenumericalsimulation.

  • PDF

Numerical Analysis on the Flow Field and Heat Transfer Characteristics of Longitudinal Vortices in Turbulent Boundary Layer - On the Common Flow Down - (3차원 난류경계층 내에 존재하는 종방향 와동의 유동장 및 열전달 특성에 관한 수치해석(I) - Common Flow Down에 관하여 -)

  • Yang Jang-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.789-798
    • /
    • 2005
  • This paper is a numerical study concerning how the interactions between a pair of the vortices effect flow field and heat transfer. The flow field (common flow down) behind a vortex generator is modeled by the information that is available from studies on a half-delta winglet. Also, the energy equation and the Reynolds-averaged Wavier-Stokes equation for three-dimensional turbulent flows, together with a two-layer turbulence model to resolve the near-wall flow, are solved by the method of AF-ADI. The present results predict that the boundary layer is thinned in the regions where the secondary flow is directed toward the wall and thickened where it Is directed away from the wall. Although some discrepancies are observed near the center of the vortex core, the overall performance of the computational model is found to be satisfactory.

Natural Convection in a Partially Opened Enclosure with a Horizontal Divider (수평격판을 갖는 상부가 부분 개방된 밀폐공간내의 자연대류)

  • Kim, J.S.;Chung, I.K.;Song, D.J.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.3
    • /
    • pp.528-537
    • /
    • 1995
  • Natural convective flow and heat transfer characteristics in a partially opened enclosure fitted with a horizontal divider are investigated numerically. The enclosure is composed of a lower hot and a upper cold horizontal walls and adiabatic vertical walls. A divider is attached perpendicularly to the vertical insulated wall. The governing equations are solved by using the finite element method with Galerkin method. The computations have been carried out by varying the length of divider, the opening size, and the Rayleigh number based on the temperature difference between two horizontal walls and the enclosure height for air(Pr=0.71). As result, when the opening size is fixed, the intensity of the secondary flow is weaken as the length of divider increases. The maximum heat transfer rate over the upper cold wall occurs at a position bounded on the opening. However, when the length of divider is increased considerably, its maximum occurs at the right wall. The stability and frequency of oscillation are affected by the Rayleigh number and length of divider. The Nusselt number is increased with the increase of the opening size and the increase of Rayleigh number.

  • PDF

Concave Surface Boundary Layer Flows in the Presence of Streamwise Vortices

  • Winoto, Sonny H.;Tandiono, Tandiono;Shah, Dilip A.;Mitsudharmadi, Hatsari
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.33-46
    • /
    • 2011
  • Concave surface boundary-layer flows are subjected to centrifugal instability which results in the formation of streamwise counter-rotating vortices. Such boundary layer flows have been experimentally investigated on concave surfaces of 1 m and 2 m radius of curvature. In the experiments, to obtain uniform vortex wavelengths, thin perturbation wires placed upstream and perpendicular to the concave surface leading edge, were used to pre-set the wavelengths. Velocity contours were obtained from hot-wire anemometer velocity measurements. The most amplified vortex wavelengths can be pre-set by the spanwise spacing of the thin wires and the free-stream velocity. The velocity contours on the cross-sectional planes at several streamwise locations show the growth and breakdown of the vortices. Three different vortex growth regions can be identified. The occurrence of a secondary instability mode is also shown as mushroom-like structures as a consequence of the non-linear growth of the streamwise vortices. Wall shear stress measurements on concave surface of 1 m radius of curvature reveal that the spanwise-averaged wall shear stress increases well beyond the flat plate boundary layer values. By pre-setting much larger or much smaller vortex wavelength than the most amplified one, the splitting or merging of the streamwise vortices will respectively occur.

Effects of Surface Radiation on the Unsteady Natural Convection in a Rectangular Enclosure

  • Baek, Seung-Wook;Kim, Taig-Young
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.95-104
    • /
    • 2002
  • Numerical solution of the full Navier-Stokes equation as well as the energy equation has been obtained for the unsteady natural convection in a rectangular enclosure. One side wall was maintained at very high temperature simulating fires. Especially the effect of surface radiation was taken into account. While the enclosed air was assumed to be transparent, the internal walls directly interacted one another through the surface radiation. Due to a significant temperature difference in the flow field, the equation of state was used instead of the Boussinesq approximation. It was found that the rapid heating of the adiabatic ceiling and floor by the incoming radiation from the hot wall made the evolution at thermo-fluid field highly unstable in the initial period. Therefore, the secondary cells brought about at the floor region greatly affected the heat transfer mechanism inside the enclosure. The heat transfer rate was augmented by the radiation, resulting in requiring less time for the flow to reach the steady state. At the steady state neglecting radiation two internal hydraulic jumps were clearly observed in upper/left as well as in lower/right comer. However, the hydraulic jump in the lower/right comer could not be observed for the case including radiation due to its high momentum flow over the bottom wall. Radiation resulted in a faster establishment of the steady state phenomena.