• Title/Summary/Keyword: Secondary Swirl Flow

Search Result 43, Processing Time 0.029 seconds

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 동축 스월제트의 유동특성에 대한 연구)

  • 김중배;이준희;이권희;김희동
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.15-18
    • /
    • 2003
  • The present study addresses an experimental investigations of the near field flow structures of supersonic, dual, coaxial, swirl jet. The swirl stream is discharged from the secondary annular nozzle and the primary inner nozzle provides the sonic and supersonic free jets. The interactions between the secondary swirl and inner soni $c^ersonic jets are quantified by a fine pilot impact and static pressure measurements and are visualized by using a shadowgraph optical method. The pressure ratios of the secondary swirl and primary soni $c^ersonic jets are varied below 7.0. Experiments are conducted to investigate the effects of the secondary swirl stream on the primary sonic and supersonic jets, compared with the secondary stream of no swirl. The results show that the presence of annular swirl stream causes the Mach disk to move more downstream, with the increased diameter, and remarkably reduces the fluctuations of the impact pressures in the supersonic dual coaxial jet, compared with the case of the secondary annular stream of no swirl.swirl.

  • PDF

Experimental Study of the Effect of Secondary Air Injection on the Cold Start Total Hydrocarbon Emissions in a Spark Ignition Engine (스파크 점화기관에서 이차 공기 분사가 냉시동시 THC 배출량에 미치는 영향에 관한 실험적 연구)

  • 이승재;함윤영;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • Engine emission regulations are becoming more stringent nowadays. In cold transient regime, about 80% THC is exhausted to the atmosphere in the first 200s (US FTP cycles). Accordingly, reducing emission levels in the cold period immediately after the engine start before the catalysts reach their working temperature will be an especially critical factor in meeting more stringent regulations in the future. In this study, the total hydrocarbon quantities are measured using a Fast FID with gasoline fuel for a 4-cylinde. Sl engine, including Secondary Air Injection (SAI) system. Commercial SAI device's direction is reverse to the exhaust flow. In this study, a swirl flow type SAI system which is positioned between the exhaust manifold and exhaust port, was developed. We compared the swirl type secondary air injection with a commercial secondary air injection of .everse flow. The swirl type SAI showed better results in reducing HC by 26% than the commercial flow type SAI of reverse flow which was caused by the better mixing between the exhaust gas and the secondary air.

Visualization of the Supersonic Swirl Jet with Annular Stream (환형 유동을 수반하는 초음속 스월 제트 유동의 가시화)

  • Kim Jung-Bae;Lee Kwon-Hee;Setoguchi Toshiaki;Kim Heuy-Dong
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.91-94
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic swilling jets are emitted from a sonic inner nozzle and the outer annular nozzle produces the co/counter swirling streams against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pilot impact and static pressure measurements, and visualized by using the Schlieren optical method. The experiment has been performed fur different swirl intensities and pressure ratios. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets, and the effect of the secondary counter-swirling jet on the primary inner jet is similar to the secondary co-swirl jet case.

  • PDF

Study of Supersonic, Dual, Coaxial, Swirl Jet (초음속 이중동축 스월제트 유동특성에 관한 연구)

  • Kim, Jung-Bae;Kim, Heuy-Dong;Lee, Kwon-Hee;Setoguchi, T.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1771-1776
    • /
    • 2003
  • The supersonic swirl jet is being extensively used in many diverse fields of industrial processes since those lead to more improved performance, compared with the conventional supersonic no swirl jet. In the present study, an experiment is carried out to investigate the effect of annular swirl jet on the supersonic dual coaxial jet. A convergent-divergent nozzle with a design Mach number of 1.5 is used for the supersonic primary jet, and the sonic nozzles with four tangential inlets are used to make the secondary swirl jet. The primary jet pressure ratio is varied in the range from 3.0 to 7.0 and the outer annular jet pressure ratio is from 1.0 to 4.0. The interactions between the annular swirl and the inner supersonic jet are quantified by the pitot impact and static pressure measurements and visualized by using the Schlieren optical method. The results show that annular swirl jet alters the shock structure and impact pressure distributions compared with no swirl jet.

  • PDF

An Experimental Study of Under-Expanded Coaxial, Swirling Jets (부족팽창 동축 스월 제트유동 특성에 관한 실험적 연구)

  • Kim, Jung-Bae;Lee, Kwon-Hee;Setoguchi, Toshiaki;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.580-585
    • /
    • 2003
  • The present study addresses experimental results to investigate the details of the near field flow structures produced in the under-expanded, dual, coaxial, swirling, jet. The sonic/supersonic swirling jets are emitted from the sonic inner nozzle and the outer annular nozzle produce the co-swirling and counter swirling against the primary swirling jet, respectively. The interactions between both the secondary annular swirling and primary inner supersonic swirling jets are quantified by the pitot impact and static pressure measurements and visualized by using the Schliern optical method. The experiment is performed for different swirl intensity and pressure ratio. The results obtained show that the secondary co-swirling jet significantly changes the inner under-expanded swirling jet, such as the recirculation zone, pressure distribution, through strong interactions between both the swirling jets and the effects of the secondary counter-swirling jet is similar to the secondary co-swirl jet case.

  • PDF

NOx and CO Emission Characteristics of Premixed Oxidizer-staging Combustor using a Cyclone Flow (싸이클론 유동을 이용한 예혼합 다단연소기의 NOx 및 CO 배출특성)

  • Kim, Jong-Hyun;Lee, Hyun-Yong;Hwang, Cheol-Hong;Lee, Chang-Eon
    • Journal of the Korean Society of Combustion
    • /
    • v.13 no.2
    • /
    • pp.7-13
    • /
    • 2008
  • The aim of this work is to identify application of ultra low NOx and CO combustor. To achieve this, we developed the premixed oxidizer-staging combustor using a cyclone flow. Various factors such as equivalence ratio for the combustion condition and swirl type for secondary air injection have been tested experimentally for flame stability and NOx, CO emission characteristics. Before to do this, we had been tested cyclone premixed combustor in advance. it is similar to first combustor of premixed oxidizer-staging combustor. As a result, cyclone premixed flame shows the very high flame stability and low NOx emission. however, it can be identified that there were some problems such as a little high CO emission and thermal resistance of combustor wall. Cyclone premixed oxidizer-staging combustor can resolve those of problems. In our combustor, we can found out optimal condition that the secondary air injection method is swirl type, swirl direction is co-swirl and equivalence ratio of first combustor is 1.3. Quantitatively, we can achieve 10.8 ppm for NOx and 30.2 ppm for CO emissions respectively. Form this result, we can identified that cyclone premixed oxidizer-staging combustor can apply to ultra low NOx and CO combustor.

  • PDF

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Lab-Scale Cold Model Combustor

  • Shin, D.;Park, S.;Jeon, B.;Yu, T.;Hwang, J.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2284-2291
    • /
    • 2006
  • The present study investigates gas residence time and mixing characteristics for various swirl numbers generated by injection of secondary air into a lab-scale cylindrical combustor. Fine dust particles and butane gas were injected into the test chamber to study the gas residence time and mixing characteristics, respectively. The mixing characteristics were evaluated by standard deviation value of trace gas concentration at different measurement points. The measurement points were located 25 mm above the secondary air injection position. The trace gas concentration was detected by a gas analyzer. The gas residence time was estimated by measuring the temporal pressure difference across a filter media where the particles were captured. The swirl number of 20 for secondary air injection angle of 5$^{\circ}$ gave the best condition: long gas residence time and good mixing performance. Numerical calculations were also carried out to study the physical meanings of the experimental results, which showed good agreement with numerical results.

Effect of Swirling Flow by Normal Injection of Secondary Air on the Gas Residence Time and Mixing Characteristics in a Combustor (연소로 내 2차공기의 주유동 수직방향 선회분사로 인한 선회류가 스월수에 따른 가스 체류시간과 혼합 특성에 미치는 영향)

  • Park Sang-Uk;Jeon Byoung-Il;Yu Tae-U;Hwang Jung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.1 s.244
    • /
    • pp.48-56
    • /
    • 2006
  • We investigated gas residence time and mixing characteristics due to various swirl numbers generated by normal injection of secondary air to a lab-scale cylinderical combustor. The residence time was estimated by measuring the temporal pressure difference which was caused by deposition of test particles on a filter media after the injection by a syringe. The mixing characteristics were evaluated by standard deviation value of test gas concentration at different measuring points. The test gas concentration was detected by a gas analyzer. The swirl number of $20{\sim}30$ for ${\theta}=5^{\circ}$ caused long residence time enough to improve mixing characteristics. Numerical calculations were also carried out to understand physical meanings of the experimental results.

A Study of Flow Pattern in $5{\times}5$ Rod Bundle by the Spacer Grid Mixing Vane (지지격자 혼합날개에 의한 $5{\times}$ 5 봉다발에서 유동 패턴)

  • Choo, Yeon-Jun;Chang, Seok-Kyu;Kim, Bok-Deok;Moon, Sang-Ki;Song, Chul-Hwa
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2873-2878
    • /
    • 2007
  • The mixing vanes attached to the spacer grid of rod bundles are used to improve the heat transfer in heat exchanger devices by controlling the characteristics of the flow structures and turbulence. In this study, velocity patterns induced by two types of mixing vane(split and swirl vane) are measured by the PIV technique to better understand how to effect on the cross and secondary vortex flow patterns in $5{\times}$ rod bundle simulating the fuel assembly of the nuclear reactor. A successful measurement of the lateral velocity patterns was conducted using a specially designed beam sheet generator and experimental loop at KAERI. As the result, we found that for the cross flow between subchannels, the split vane is more effective than the swirl vane, while for the secondary vortex flow in each subchannel, the swirl vane's one is larger and longer than split vane's one.

  • PDF

A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle (핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구)

  • An, J.S.;Choi, Y.D.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF