• 제목/요약/키워드: Secondary Refrigerant

검색결과 34건 처리시간 0.017초

가스 엔진 VRF시스템의 에너지 실사용량 & 시뮬레이션 평가와 전기 구동 VRF 시스템과의 성능비교에 관한 연구 (Evaluation of actual Energy consumption & Simulation of Gas Engine VRF System and Comparison with Electric VRF System)

  • 최슬건;전종욱;김강수
    • KIEAE Journal
    • /
    • 제17권4호
    • /
    • pp.67-74
    • /
    • 2017
  • Purpose: As the recent climate environment changes so rapidly, environmental problems such as hot weather and fine dust have occurred, and interest in environmental policies and technology development is increasing in countries around the world. Similarly in the Architecture, researches to reduce greenhouse gas emissions and to reduce energy application are actively conducted. Looking at previous studies, it is analyzed that the electric VRF is more energy efficient than the gas engine VRF. However, energy costs have changed due to recent price hikes and discounts on gas charges due to high electricity consumption in summer. Method: In this study, the actual building of Gas Engine VRF system was modeled using SketchUp program, and EnergyPlus was used to simulate actual building. Also, Electric VRF system was simulated, and compared with Gas Engine VRF system. Result: The total secondary energy requirement of Electric VRF system was 19.6% less than that of the Gas Engine VRF system, But when analyzing with primary energy requirement, EHP used 15.8% more energy. CO2 emissions were also estimated to be 16.9% more EHP. Energy costs were 14.8% more in Electric VRF systems, because their electricity charges are 0.6 to 160% more expensive than gas charges.

저온용 R502 대체냉매의 성능 평가 (Performance of R502 Alternative Refrigerants for Low Temperature Applications)

  • 하종철;황지환;백인철;정동수
    • 설비공학논문집
    • /
    • 제17권10호
    • /
    • pp.883-890
    • /
    • 2005
  • In this study, 2 pure hydrocarbon refrigerants of R1270 (Propylene) and R290 (Propane) and 3 binary mixtures composed of R1270, R29O and R152a were tested in a refrigerating bench tester with a scroll compressor in an attempt to substitute R502 used in most of the low temperature applications. The test bench provided 3\sim3.5$ kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of -28 and $45^{\circ}C$ in the evaporator and condenser, respectively. Test results showed that all refrigerants tested had $9.6\sim18.7\%$ higher capacity and $17.1\sim27.3\%$ higher COP than R502. The compressor discharge temperature of R1270 was similar to that of R502 while those of all other refrigerants were $23.7\sim27.9\%$ lower than that of R502. For all alternative refrigerants, the amount of charge was reduced up to $60\%$ as compared to R502. Overall, these alternative refrigerants offer better system performance and reliability than R502 and can be used as long term substitutes for R502 due to their excellent environmental properties.

증발기와 응축기 온도변화에 따른 R22 대체냉매 R290 및 R1270의 성능평가 (Performance of R290 and R1270 as Alternative Refrigerants of R22 According to Temperature Variations of Evaporator and Condenser)

  • 백인철;박기정;심윤보;정동수
    • 설비공학논문집
    • /
    • 제18권10호
    • /
    • pp.761-767
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons R290 and R1270 was measured in an attempt to substitute R22 under 3 different temperature conditions. They were tested in a refrigerating bench tester with a hermetic rotary compressor. The test bench provided about 3.5 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of $7/45^{\circ}C$ and $-7/41^{\circ}C$ and $-21/28^{\circ}C$ in the evaporator and condenser, respectively. Test results show that the coefficient of performance (COP) of these refrigerants is up to 11.54% higher than that of R22 in all temperature conditions. Compressor discharge temperatures were reduced by $14{\sim}31^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 58% as compared to R22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for residential air-conditioning and heat pumping application.

증발기와 응축기 온도변화에 따른 R22 대체냉매의 성능평가 (Performance Evaluation of R22 Alternative Refrigerants According to Temperature Variations of Evaporator and Condenser)

  • 백인철;심윤보;정동수
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.58-63
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 3 mixtures was measured in an attempt to substitute R22 under 3 different temperature conditions. The mixtures were composed of R1270(propylene), R290(propane) and R152a. They were tested in a refrigerating bench tester with a hermetic rotary compressor The test bench provided about 3.5 kW capacity and water and water/glycol mixture were employed as the secondary heat transfer fluids. All tests were conducted under the same external conditions resulting in the average saturation temperatures of $7^{\circ}C/45^{\circ}C$ and $-7^{\circ}C/41^{\circ}C$ and $-21^{\circ}C/28^{\circ}C$ in the evaporator and condenser, respectively. Test results show that the coefficient of performance (COP) of these refrigerants is up to 11.54% higher than that of R22 in all temperature conditions. Compressor discharge temperatures were reduced by $14{\sim}31^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 58% as compared to R22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for residential air-conditioning and heat pumping application.

  • PDF