• Title/Summary/Keyword: Secondary Piping

Search Result 72, Processing Time 0.021 seconds

Wall Thinning Analyses for Secondary Side Piping of Domestic NPPs Using CHECWORKS Code (CHECWORKS 코드를 이용한 국내 원전 2차계통 배관감육 해석)

  • Hwang, K.M.;Jin, T.E.;Lee, S.H.;Kim, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.807-812
    • /
    • 2001
  • This paper represents the wall thinning analysis results for secondary side piping of two types of domestic nuclear power plants based on the DB establishment and F AC analysis study for NPP secondary system piping. CHECWORKS code utilized in this study has been applied world widely to wall thinning analyses for secondary side piping and its reliability has also been proved. The predicted wear rates for several piping systems of a pressurized water reactor NPP are compared with those of a pressurized heavy water reactor NPP and with the measured wear rates. On the basis of comparison results of the predicted and measured wear rates, the analysis results can be effectively applied to the development of a standard thinned pipe management program targeted all domestic nuclear power plants.

  • PDF

A Study on Prediction of Metal Loss by Flow-Accelerated Corrosion in the CANDU NPP Secondary Piping Systems (침부식에 의한 CANDU형 원전 2차측 배관의 감육 예측에 관한 연구)

  • Shim, S.H.;Song, J.S.;Yoon, K.B.;Hwang, K.M.;Jin, T.E.;Lee, S.H.;Kim, W.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.616-621
    • /
    • 2001
  • Flow-accelerated corrosion(FAC) is a phenomenon that results in metal loss from piping, vessels, and equipment made of carbon steel. FAC occurs only under certain conditions of flow, chemistry, geometry, and material. Unfortunately, those conditions are in much of the high-energy piping in nuclear and fossil-fueled power plants. Also, for domestic NPP secondary pipings whose operating time become longer, more evidences of FAC have been reported. The authors are studying on FAC management using CHECWORKS, computer code developed by EPRI. This paper is on the prediction results of metal loss by FAC in the one of CANDU type NPP secondary piping systems.

  • PDF

Thin-Plate-Type Embedded Ultrasonic Transducer Based on Magnetostriction for the Thickness Monitoring of the Secondary Piping System of a Nuclear Power Plant

  • Heo, Taehoon;Cho, Seung Hyun
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1404-1411
    • /
    • 2016
  • Pipe wall thinning in the secondary piping system of a nuclear power plant is currently a major problem that typically affects the safety and reliability of the nuclear power plant directly. Regular in-service inspections are carried out to manage the piping system only during the overhaul. Online thickness monitoring is necessary to avoid abrupt breakage due to wall thinning. To this end, a transducer that can withstand a high-temperature environment and should be installed under the insulation layer. We propose a thin plate type of embedded ultrasonic transducer based on magnetostriction. The transducer was designed and fabricated to measure the thickness of a pipe under a high-temperature condition. A number of experimental results confirmed the validity of the present transducer.

A Numerical Study on Flow-Accelerated Corrosion in Two Adjacent Elbows

  • Yun, Hun;Hwang, Kyeongmo;Moon, Seung-Jae
    • Corrosion Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.6-12
    • /
    • 2016
  • Flow-Accelerated Corrosion (FAC) is a well-known degradation mechanism that attacks the secondary piping in nuclear power plants. Since the Surry Unit 2 event in 1986, most nuclear power plants have implemented management programs to deal with damages in carbon and low-alloy steel piping. Despite the utmost efforts, damage induced by FAC still occurs in power plants around the world. In order to predict FAC wear, some computer programs were developed such as CHECWORKS, CICERO, and COMSY. Various data need to be input to these programs; the chemical composition of secondary piping, flow operating conditions and piping geometries. CHECWORKS, developed by the Electric Power Research Institute (EPRI), uses a geometry code to calculate geometry effects. Such a relatively simple geometry code is limited in acquiring the accuracy of FAC prediction. Recently, EPRI revisited the geometry code with the intention of updating it. In this study, numerical simulations were performed for two adjacent $90^{\circ}$ elbows and the results were analysed in terms of the proximity effect between the two adjacent elbows.

Stress Indices of Hollow Circular Cross Section Welded Attachments on Piping Elbows with the Extended Parameters Range (매개변수 적용범위를 확장한 배관 곡관부에 용접 부착된 원형관 이음부의 이차응력지수)

  • Lee, Kun-Suk;Moon, Seong-Jae
    • Plant Journal
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2019
  • The stress concentration of the integral welded attachments (IWA) often used to support piping system has been a big issue because it induces local stresses in piping. The method to evaluate local stresses associated with attachments on elbows has been suggested in EPRI TR-107453. However, there are limitations regarding specific parameters range in order to use correlation equation. In this paper, parametric study based on piping elbow size and attachment dimension was performed utilizing finite element analysis (FEA) to evaluate the secondary stress indices of hollow circular cross section welded attachments on piping elbows with the extended parameters range. The results of the FEA were used to develop correlation formulas for calculating secondary stress indices. The empirical equations in this study are suggested as an alternative evaluation method of EPRI TR-107453 by extending parameters range.

A Study on Managing of Metal Loss by Flow-Accelerated Corrosion in the Secondary Piping of CANDU Nuclear Plants (CANDU형 원전 2차 배관의 침부식 감육 관리방법에 관한 연구)

  • 심상훈;송정수;윤기봉;황경모;진태은;이성호
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.18-25
    • /
    • 2002
  • One of the most serious concern in nuclear power plant piping maintenance is thickness reduction due to flow-accelerated corrosion (FAC). Since the FAC occurs under specific conditions of pH, dissolved oxygen, temperature, flow velocity, steam quality of the fluid and materials and geometry of the piping, a systematic approach is required for managing the FAC problem. In this study, construction of a secondary piping database, analyzing the FAC rate using the database and predicting the residual life was performed for a domestic CANDU nuclear power plant. Also FAC mechanism and factors affecting FAC were reviewed. By showing a case study on analysis for a pipe line between a separator and a flash tank, a procedure for managing FAC problem is suggested. The procedure proposed in this paper can be widely applied to the secondary piping of other domestic nuclear polder plants.

Evaluation of Corrosion Product Behavior in NPP Secondary System with Complex Amine (복합아민 적용에 따른 원전 2차 계통 부식생성물 거동평가)

  • JUNG, Hyunjun;RHEE, In Hyoung;Kim, Young In
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.96-99
    • /
    • 2014
  • The aim of the study was to evaluate the water treatment of pressurized water reactor secondary side by the mixed amine of ammonia and ethanolamine, from the standpoint of corrosion control, as compared with all volatile treatment of ammonia. The pressurized water reactor systems have switched a secondary side pH control agent to minimize the corrosion in the moisture separator/reheater and feedwater heater systems and the transport of corrosion products into steam generator. As results of field test, pH was increased in the steam generator and the wet steam area of moisture separator/reheater and the concentration of Fe were decreased by more than 50% as compared with water treatment of ammonia.

Stress Index Development for Piping with Trunnion Attachment Under Pressure and Moment Loadings

  • Lee, Dae-hee;Kim, Jong-Min;Park, Sung-ho
    • Nuclear Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.310-319
    • /
    • 1997
  • A finite element analysis of a trunnion pipe anchor is presented. The structure is analyzed for the case of internal pressure and moment loadings. The stress results are categorized into the average (membrane) stress, the linearly varying (bending) stress and the peak stress through the thickness. The resulting stresses are interpreted per Section III of the ASME Boiler and Pressure Vessel Code from which the Primary(B$_1$), Secondary(C$_1$) and Peak(K$_1$) stress indices for pressure, the Primary (B$_2$), Secondary(C$_2$) and Peak(K$_2$) stress indices for moment are developed. Based on the comparison between stress value by stress indices derived in this paper and stress value represented by the ASME Code Case N-391-1, the empirical equations for stress indices are effectively used in the piping stress analysis. Therefore, the use of empirical equations can simplify the procedure of evaluating the local stress in the piping design stage.

  • PDF

Probabilistic Damage Mechanics Assessment of Wall-Thinned Nuclear Piping Using Reliability Method and Monte-Carlo Simulation (신뢰도지수 및 몬데카를로 시뮬레이션을 이용한 원전 감육배관의 확률론적 손상역학 평가)

  • Lee Sang-Min;Yun Kang-Ok;Chang Yoon-Suk;Choi Jae-Boong;Kim Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1102-1108
    • /
    • 2005
  • The integrity of nuclear piping systems has to be maintained sufficiently all the times during operation. In order to maintain the integrity, reliable assessment procedures including fracture mechanics analysis, etc, are required. Up to now, the integrity assessment has been performed using conventional deterministic approach even though there are lots of uncertainties to hinder a rational evaluation. In this respect, probabilistic approach is considered as an appropriate method for piping system evaluation. The objectives of this paper are to develop a probabilistic assessment program using reliability index and simulation technique and to estimate the damage probability of wall-thinned pipes in secondary systems. The probabilistic assessment program consists of three evaluation modules which are first order reliability method, second order reliability method and Monte Carlo simulation method. The developed program has been applied to evaluate damage probabilities of wall-thinned pipes subjected to internal pressure, global bending moment and combined loading. The sensitivity analysis results as well as prototypal evaluation results showed a promising applicability of the probabilistic integrity assessment program.