• 제목/요약/키워드: Secondary Flow Region

검색결과 175건 처리시간 0.022초

원심형, 사류형, 축류형 펌프단에서 살펴본 이차유동의 수치적 고찰 (Numerical Investigation of Secondary Flow in 3 Pump Stages: Centrifugal Multistage/Mixed-flow Stage/ Axial-flow Stage)

  • 오종식
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.359-364
    • /
    • 2005
  • Centrifugal pump shows the strongest secondary flow. Wake is formed near pressure surface close to hub at impeller exit for centrifugal pump impeller. Pressure gradient drives secondary flow in the inducer region, while in the remaining region the following sources drive together: > Pressure gradient > Coriolis force Low-momentum fluid near suction surface hub moves toward pressure surface hub in mixed-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow pump impeller. Tip leakage vortex dominate secondary flow in axial-flow in axial-flow pump impeller

  • PDF

과냉각을 동반한 순수물의 냉각현상 해석 (Analysis of cooling phenomenon of water with the supercooled)

  • 추미선;윤정인;김재돌
    • 대한기계학회논문집B
    • /
    • 제21권7호
    • /
    • pp.862-872
    • /
    • 1997
  • Ice formation in a horizontal circular cylinder has been studied numerically. From the numerical analysis results, it was found that there were three types of freezing pattern and that freezing phenomenon was affected largely by density inversion and cooling rate. The type of freezing pattern largely depends on the secondary flow which is generated by density inversion. When supercooling energy is released before the development of the secondary flow, the annular ice layer grows. If the energy is released when the secondary flow is considerably developed and the supercooled region is removed to the upper half part of the cylinder, an asymmetric ice layer grows. And if the energy is released after perfect development of the secondary flow, instantaneous dendritic ice formation over the full region occurs. Furthermore, this secondary flow was found to have an effect on heat transfer characteristics. The heat transfer rate becomes small at the instant when the secondary flow is generated, but becomes large with the development of the flow. It's concluded that for the facilitation of heat transfer it is desirable to keep water in liquid phase until the secondary flow is perfectly developed. This study gave an instruction of performance improvement of capsule type ice storage tank.

Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 측정 (Flow Characteristics of secondary recirculation region for using Stereoscopic PIV in a Liquid Fuel Ramjet Combustor)

  • 김석주;최종하;박철우;손창현
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2003년도 추계학술대회 논문집
    • /
    • pp.115-120
    • /
    • 2003
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor are investigated using CFD and 3-D Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach0.3 at inlet. Both computational and experimental results showed the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation region increased with upon closer center of axial combustor. Since the performance of combustor depends on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the recirculation size as frame holder.

  • PDF

액체 램젯트 엔진 연소기내의 이차유동 특성 (Flow Characteristics of Secondary Recirculation Region in a Liquid Ramjet Combustor)

  • C. H. Sohn;J. S. Hong;S. Y. Moon;C. W. Lee
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2003년도 제20회 춘계학술대회 논문집
    • /
    • pp.137-140
    • /
    • 2003
  • The flow characteristics of secondary recirculation region in a liquid fuel ramjet combustor are measured using PIV method. The model combustor has two rectangular inlets that form 90 degree angle each other. The tested angles of the air intakes were 30, 45 and 60. Three guide vanes are installed in each rectangular inlet to improve the flow stability. The experiments are performed in the water tunnel test with the same Reynolds number as the case of Mach 0.3 at the inlet. PIV software is developed to measure the characteristics of the flow field in the combustor. The accuracy of the developed PIV program is verified with rotating disk experiment and standard data. The experimental results show that the secondary recirculation flow occurred at the front junction of inlet main stream and combustorchamber. The size of secondary recirculation regions are increased with increasing air inlet angles. Since the performanceof combustor is very dependant on not only the main recirculation in the dome region but also the secondary recirculation flow in a junction region, the optimal angle of the air intakes should consider the both recirculation size as a frame holder.

  • PDF

2차유동이 평판후류의 난류열전달에 미치는 영향 (Effects of the secondary flow on the turbulent heat transfer of a flat plate wake)

  • 김형수;이준식;강신형
    • 대한기계학회논문집B
    • /
    • 제22권4호
    • /
    • pp.417-427
    • /
    • 1998
  • The effect of secondary flow on the heat transfer of a turbulent wake generated by a flat plate was experimentally investigated. The secondary flow was induced in a curved duct in which the flat plate wake generator was installed. All three components of turbulent heat flux were measured in the plane containing the mean radius of curvature of the curved duct. The results showed that mean temperature profiles deviate from the similarity of the straight wake because of the cold fluid transported from the free-stream. The half-width of the mean temperature profile increased rapidly by upwash motion of the secondary flow. The changes to turbulence structure caused by the secondary flow show more pronounced effect on heat transport than on momentum transport. This is because the response to the variation of flow conditions is delayed in temperature field. Negative production of the turbulent heat flux is observed in the inner wake region. From the conditional averaging, it has been found that the negative production of the turbulent heat flux is generated due to a mixing process between the hot and low momentum eddies occupied in the inner wake region and the cold and high momentum eddies in the potential region.

열선 유속계에 의한 정사각형 단면의 270도 곡관에서의 난류유동 특성에 관한 연구 (Measurement of Turbulent Flows in a Square Sectioned $270^{\circ}$ Bend)

  • 조석휴;최영돈;이건휘
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집B
    • /
    • pp.467-472
    • /
    • 2000
  • Most of the past experimental or analytical studies were performed for the curved bend with a square cross-section. Velocity profiles and Reynolds stresses of the turbulence flow in the 270 degree bend with circular cross-section were measured by a hot-wire anemometer. The mean velocity of primary flowing direction effected by the downstream of bend in the entry region of the bend. The flow in the inner part of the bend slowed the distribution velocity relatively large and unsymmetric phenomenon. In the strong secondary flow occurred when the flow passed in the region of 45 degree to 90 degree. The secondary flow appeared very large value in the neighbor region of inner wall.

  • PDF

2차유동이 평판후류의 난류구조에 미치는 영향 (Effects of Secondary Flow on the Turbulence Structure of a Flat Plate Wake)

  • 김형수;이준식;강신형
    • 대한기계학회논문집B
    • /
    • 제23권9호
    • /
    • pp.1073-1084
    • /
    • 1999
  • The effects of secondary flow on the structure of a turbulent wake generated by a flat plate was investigated experimentally. The secondary flow was induced In a $90^{\circ}$ curved duct in which the flat plate wake generator was installed. The wake generator was installed in such a way that the wake velocity gradient exists in the span wise direction of the curved duct. Measurements were made in the plane containing the mean radius of curvature where pressure gradient and curvature effects were small compared with the secondary flow effect. All six components of the Reynolds stresses were measured in the curved duct. Turbulence intensities in the curved wake are higher than those in the straight wake due to an increase of the turbulent kinetic energy production by the secondary flow. In the inner wake region, shear stress and strain in the plane containing the velocity gradient of the wake show opposite signs with respect to each other, so that eddy viscosity Is negative in this region. This indicates that gradient-diffusion type turbulence models are not appropriate to simulate this type of flow.

LDV에 의한 정사각 단면 180° 곡덕트에서 난류진동유동의 유동특성 (Characteristics of Developing Turbulent Oscillatory Flows in a 180° Curved Duct with a Square Sectional by using a LDV)

  • 윤석주;이행남;손현철
    • 설비공학논문집
    • /
    • 제27권7호
    • /
    • pp.344-353
    • /
    • 2015
  • In the present study the characteristics of turbulent oscillatory flows in a square-sectional $180^{\circ}$curved duct were investigated experimentally. A series of experiments for air flow were conducted to measure axial velocity profiles, secondary flow velocity profiles and pressure distributions. The measurements were made by a Laser Doppler Velocimeter (LDV) system with a data acquisition and processing system which includes Rotating Machinery Resolve (RMR) and PHASE software. The results from the experiment are summarized as follows. (1) The maximum velocity moved toward the outer wall from the region of a bend angle of $30^{\circ}$. The velocity distribution had a positive value extended over the total phase in the region of a bend angle of $150^{\circ}$. (2) Secondary flows were generally proportional to the velocity of the main flow. The intensity of the secondary flow was about 25% as much as that in the axial direction. (3) Pressure distributions were effects of the oscillatory Dean number and respective region.

Stereoscopic PIV 속도장 측정기법을 이용한 액체 램제트 연소기에서의 2차 재순환 유동장 특성 (Secondary Flow Characteristics in a Liquid Ramjet Combustor Using Stereoscopic PIV)

  • 김석주;손창현
    • 한국가시화정보학회지
    • /
    • 제3권1호
    • /
    • pp.58-62
    • /
    • 2005
  • Flow characteristics at secondary recirculation zone in a liquid fuel ramjet combustor were investigated using CFD and Stereoscopic PIV method. The combustors have two rectangular inlets that form 90 degree each other. Three guide vanes were installed in each rectangular inlet to improve the flow stability. The tested angle of the air intakes was 60 degree. The experiments were performed in the water tunnel test with the same Reynolds number in the case of Mach 0.3 at inlet. The computational and experimental results showed that the secondary recirculation flow occurred at the front junction of inlet main stream and combustor chamber. The size of secondary recirculation regions are increased with approaching closer to the center of the combustor. Since the performance of combustor is closely dependent not only on the main recirculation in the dome region but also on the secondary recirculation flow in a junction region, the optimal angle of the air intakes should be considered the recirculation size as frame holder.

  • PDF

원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구 (Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller)

  • 김세진;김동원;김윤제
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1999년도 춘계 학술발표회 논문집
    • /
    • pp.151-157
    • /
    • 1999
  • 원심 펌프내 3차원 유동 특성을 고찰하기 위하여 혼류형 원심펌프의 내부유동특성을 수치적 고찰하였다. 회전차 내의 유동현상에 대한 상세한 해석과 이해는 원심펌프의 주요 요소들에 대한 성능 예측에 있어 매우 중요하다. 회전차 내부의 유동은 3차원 점성효과가 지배적이기 때문에 펌프 성능에 중대한 영향을 준다. 회전차내의 3차원 점성유동은 주 영역인 등엔트로피 유동과 원심력과 Coriolis힘에 의한 경계층의 변화, 벽면의 전단응력, 2차 유동(secondary flow)등의 영향에 의한 비가역 영역으로 구분한다. 저 운동량 영역을 만드는 회진차 내부의 점성 유동은 정체영역(blockage)과 실속(stall)이라는 비가역 영역을 만들게 되는데, 결과적으로 펌프의 성능과 효율저하를 유발시킨다. 특히 Coriolis힘과 원심력은 비가역 영역을 증대시키는 가장 큰 힘이라는 사실을 알았다.

  • PDF