• Title/Summary/Keyword: Secondary Breakup

Search Result 18, Processing Time 0.032 seconds

Development of Hybrid Model for Simulating of Diesel Spary Dynamics (디젤분무의 모사를 위한 혼합 모델의 개발)

  • 김정일;노수영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.1
    • /
    • pp.8-19
    • /
    • 2001
  • A number of atomization and droplet breakup models have been developed and used to predict the diesel spray characteristic. Most of these models could not provide reasonable computational result of the diesel spray characteristic because they have only considered the primary breakup. A hybrid model is, therefore, required to develop by considering the primary and secondary breakup of liquid jet. according to this approach, wave breakup(WB) model was used compute the primary breakup of the liquid jet and droplet deformation and breakup(DDB) model was used for the secondary breakup of droplet. Development of hybrid model by using KIVA-II code was performed by comparing with the experimental data of spray tip penetration and SMD from the literature. A hybrid model developed in this study could provide the good agreement with the experimental data of spray tip penetration. The prediction results of SMD were in good agreement between 0.5 and 1.0 ms after the start of injection. Numerical results obtained by the present hybrid model have the good agreement with the experimental data with the breakup time constant in WB model of 30, and DDB model constant Ck of 1.0 when the droplet becomes less than 95% of maximum droplet diameter injected.

  • PDF

Spray and Evaporation Characteristics of DME fuel at the High pressure and temperature (고온 고압하에서의 DME 연료 분무 및 증발 특성)

  • Kim, Hyung-Jun;Suh, Hyun-Gyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2007
  • The purpose of this study is to analyze spray and evaporation characteristics of DME fuel at the high pressure and temperature. For the numerical analysis of dimethyl ether(DME) fuel spray characteristics, hybrid breakup model was applied to the DME spray and its breakup process. In order to obtain experimental results for comparison with the predicted ones, the visualization of the spray evolution process was executed by using a Nd:YAG laser. Also, the numerical investigation was conducted by the two hybrid models for primary and secondary breakup of the DME spray. The primary breakup model was used the Kelvin-Helmholtz(KH) breakup model. In the secondary breakup process, Rayleigh-Taylor(RT) and Drop Deformation Breakup(DDB) model was applied. The results of this study provide the macroscopic characteristics of the spray such as spray tip penetration and cone angle, and prediction accuracy of the two hybrid model.

  • PDF

Numerical and Experimental Analysis of Spray Atomization Characteristics of a GDI Injector

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.449-456
    • /
    • 2003
  • In this study, numerical and experimental analysis on the spray atomization characteristics of a GDI injector is performed. For numerical approach, four hybrid models that are composed of primary and secondary breakup model are considered. Concerning the primary breakup, a conical sheet disintegration model and LISA model are used. The secondary breakup models are made based on the DDB model and RT model. The global spray behavior is also visualized by the shadowgraph technique and local Sauter mean diameter and axial mean velocity are measured by using phase Doppler particle analyzer Based on the comparison of numerical and experimental results, it is shown that good agreement is obtained in terms of spray developing process and spray tip penetration at the all hybrid models. However, the hybrid breakup models show different prediction of accuracy in the cases of local SMD and the spatial distribution of breakup.

Numerical Analysis for Breakup of Liquid Jet in Crossflow (기체 유동에 수직 분사된 액체의 분해에 대한 수치적 해석)

  • Park, Sun-Il;Chang, Keun-Shik;Moon, Yun-Wan;Sah, Jong-Youb
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1629-1633
    • /
    • 2004
  • Liquid is commonly introduced as transversal jets in venturi scrubber which is one of the gas cleaning equipments. The jet dynamics such as penetration and breakup is of fundamental importance to the dust-collection efficiency. We have developed a model that can numerically simulate the breakup of the liquid jet in crossflow. This simulation consists of models on liquid column, jet surface breakup, column fracture and secondary droplet breakup. These models have been embedded in the KIVA3-V code. We have calculated such parameters as the jet penetration, jet trajectory, droplet size, velocity field and the volume flux distribution. The results are compared with the experimental data in this paper.

  • PDF

Breakup and Ignition Observation of n-Dodecane Emulsion Single Droplet using Two Pulse Lasers (독립된 두 레이저를 이용한 n-Dodecane 에멀전 단일 액적의 분열 및 점화 현상의 관찰)

  • Jang, Gyu Min;Jung, Yongjin;Lee, Min Jung;Kim, Nam Il
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.213-214
    • /
    • 2015
  • Breakup and ignition of single droplet were experimentally investigated using two independent Nd-YAG lasers. The emulsified fuel was made from n-dodecane and water while varying the relative volumetric fraction. As a result of visualization, breakup and ignition behaviors were dependent on the fraction. Luminosity from the secondary droplets increased as the water fraction decreased. Ignition did not occur below 80% of the n-dodecane fraction.

  • PDF

Comparison of GDI Spray Prediction by Hybrid Models (혼합모델에 의한 GDI 분무예측의 비교)

  • Kang, Dong-Wan;Hwang, Chul-Soon;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.12
    • /
    • pp.1744-1749
    • /
    • 2003
  • The purpose of this study is to obtain the information about the development process of GDI spray. To acquire the characteristics of GDI spray, the computational study of hollow cone spray for high-pressure swirl injectors was performed. Several hybrid models using the modified KIVA code have been introduced and compared. WB model and LISA model were used for the primary breakup, and DDB and APTAB models were used for secondary breakup. To compare with the calculated results, the experimental results such as cross-sectional images and SMD distribution were acquired by laser Mie scattering technique and Phase Doppler Analyzer respectively. The results show that LISA+APTAB hybrid model has the best prediction for spray formation process.

Experimental Analysis and Numerical Modeling Using LISA-DDB Hybrid Breakup Model of Direct Injected Gasoline Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1812-1819
    • /
    • 2003
  • This paper presents the effect of injection pressure on the atomization characteristics of high-pressure injector in a direct injection gasoline engine both experimentally and numerically. The atomization characteristics such as mean droplet size, mean velocity, and velocity distribution were measured by phase Doppler particle analyzer. The spray development, spray penetration, and global spray structure were visualized using a laser sheet method. In order to investigate the atomization process in more detail, the calculations with the LISA-DDB hybrid model were performed. The results provide the effect of injection pressure on the macroscopic and microscopic behaviors such as spray development, spray penetration, mean droplet size, and mean velocity distribution. It is revealed that the accuracy of prediction is promoted by using the LISA-DDB hybrid breakup model, comparing to the original LISA model or TAB model alone. And the characteristics of the primary and secondary breakups have been investigated by numerical approach.

An Overview of Liquid Spray Modeling Formed by High-Shear Nozzle/Swirler Assembly

  • Koo, Ja-Ye
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.726-739
    • /
    • 2003
  • A multi-dimensioanl model is being increasingly used to predict the thermo-flow field in the gas turbine combustor. This article addresses an integrated survey of modeling of the liquid spray formation and fuel distribution in gas turbine with high-shear nozzle/swirler assembly. The processes of concern include breakup of a liquid jet injected through a hole type orifice into air stream, spray-wall interaction and spray-film interaction, breakup of liquid sheet into ligaments and droplet,5, and secondary droplet breakup. Atomization of liquid through hole nozzle is described using a liquid blobs model and hybrid model of Kelvin-Helmholtz wave and Rayleigh-Taylor wave. The high-speed viscous liquid sheet atomization on the pre-filmer is modeled by a linear stability analysis. Spray-wall interaction model and liquid film model over the wall surface are also considered.

Modeling of Spray Atomization of Fuel Injector Using Hybrid Model (복합 모델을 이용한 연료 인젝터의 분무 미립화 모델링)

  • Park, Sung-Wook;Kim, Hyung-Jun;Rhyu, Youl;Lee, Chang-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.27-33
    • /
    • 2002
  • This paper presents the comparison of prediction accuracy of hybrid models. To obtain the experimental results fur comparing with the numerical results, the macroscopic and microscopic structures of the hollow-cone spray such as spray development process, spray penetration and the distribution of mean droplet size are investigated by using a shadowgraph technique and phase Doppler particle analyzer. Also, the numerical researches using various hybrid models are performed. LISA model and WAVE model are used for the primary breakup, and TAB, DDB, and RT model are used for the secondary breakup.

The Advancement of Breakup and Spray Formation by the Swirl Spray Jets in the Low Speed Convective Flow (전단 유동에 의한 스월 제트의 미립화 및 분무특성 향상)

  • Jeong, Jae-Chul;Yoon, Woong-Sup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.267-274
    • /
    • 2009
  • Breakup and spray formation of pressure-swirl liquid jets injected into a low-speed convective-flow are experimentally investigated. Effects of the cross-flows on the macroscopic and microscopic spray parameters are optically measured in terms of jet Weber number and liquid-to-gas momentum ratio. The liquid stream undergoes Rayleigh jet breakup at lower jet Weber numbers and a liquid sheet isn't formed because of the weak radial velocity in the swirl jet. At higher jet Weber numbers, the macroscopic spray parameter is a very weak function of the momentum ratio but the effect of the convection on the microscopic spray parameter is significant through the secondary breakup with increasing in the liquid-to-gas momentum ratio. The convective-flow promotes bag/plume breakup and the spray formation, and its effect is more distinct at higher momentum ratio.

  • PDF