• Title/Summary/Keyword: Secondary Bonding

Search Result 116, Processing Time 0.023 seconds

A Study on the Improvement of Adhesive Strength of Between Metal and Polyethylene Materials (금속재와 폴리에틸렌 재료간의 접착강도 향상에 대한 연구)

  • Lee, Ji-Hoon;Kim, Hyun-Ju;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.143-148
    • /
    • 2007
  • Polyethylene is a typical hydrophobic material and it is difficult to bond the polyethylene material with metal material. Thus, it is important to modify the surface of polyethylene material to improve the bonding strength between the polyethylene and the metal materials. In this study, the surface modification of polyethylene material was investigated to improve the interfacial strength between the polyethylene and the steel materials. Polyethylene material was surface-modified in a plasma cleaner using an oxygen gas. Two cases of composites (surface-modified pelyethylene/steel composite and regular (as-received) pelyethylene/steel composite) were fabricated using a secondary bonding method. Shear and bending tests have been performed using the two cases of composites. The results showed that the contact angle did not change much as the modification time increased. However, the contact angle decreased from ${\sim}76^{\circ}\; to\;{\sim}41^{\circ}$ with the modification. The results also showed that the shear strength and the bending strength were improved about 3030 % and 7 %, respectively when the polyethylene was plasma-modified using an oxygen gas.

Kinetic Study on Aminolysis of 4-Nitrophenyl Nicotinate and Isonicotinate: Factors Influencing Reactivity and Reaction Mechanism

  • Kim, Min-Young;Shin, Minah;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2443-2447
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of 4-nitrophenyl nicotinate (7) and 4-nitrophenyl isonicotinate (8) with a series of cyclic secondary amines in $H_2O$ containing 20 mol % DMSO at $25.0^{\circ}C$. The Br${\o}$nsted-type plots for the reactions of 7 and 8 are linear with ${\beta}_{nuc}=0.90$ and 0.92, respectively, indicating that the reactions proceed through a stepwise mechanism with expulsion of the leaving group occurring in the rate-determining step. Comparison of the reactivity of 7 and 8 with that of 4-nitrophenyl benzoate (2a) and 4-nitrophenyl picolinate (6) has revealed that their reactivity toward the amines increases in the order 2a < 7 < 8 < 6, although the reactions of these substrates proceed through the same mechanism. Factors that control reactivity and reaction mechanism have been discussed in detail (e.g., inductive and field effects, H-bonding interaction, solvent effect, etc.).

An Experimental Study on the Mechanical Properties of T-Joints Structure using CFRP/Al Honeycomb Sandwich Composite (CFRP/Al하니콤 샌드위치 복합재 T-Joint 구조물의 기계적 물성에 대한 실험적 연구)

  • Cho, Ki-Dae;Ha, Sung-Rok;Kang, Kwang-Hee;Kim, Jie-Eok;Yang, Sung-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.3
    • /
    • pp.313-318
    • /
    • 2012
  • Application of composite structures on naval ships strongly depends on the mechanical strength and collapse behavior of the T-joints of the whole structure. Because of the weight advantages over single skin composite and bolt fastening joining, three types of T-joints using both honeycomb sandwich composite and adhesive bonding were suggested to determine the effect of T-joint configuration. It was found that joining with a urethane foam block and overlaminates using the secondary co-bonding technique improves T-joint strength.

Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer with Carboxylic acid and Nano zinc oxide (Carboxylic acid와 nano zinc oxide를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구)

  • Shin, Hyun Deung;Kim, Dong Ho;Kim, Gu Ni
    • Elastomers and Composites
    • /
    • v.49 no.3
    • /
    • pp.191-198
    • /
    • 2014
  • We synthesized thermoplastic polyurethane elastomer(TPU) with acid group and nano zinc oxide, and characterized their mechanical properties, thermal properties, contact angle and grip property. The effects of the zinc oxide content and size on the physical property of TPU were investigated. When the nano zinc oxide was introduced in TPU with acid group, it had excellent mechanical properties and grip by formation of hydrogen and ionic bonding. The wet slip of TPU with zinc oxide was increased continuously as ionization rate increased due to increase of hydrophilicity and ionic interaction, and mechanical properties were increased with increasing ionization rate up to 50%.

Preparation and Characterization of Proton Conducting Composite Membranes From P(VDF-CTFE)-g-PSPMA Graft Copolymer and Heteropolyacid

  • Seo, Jin-Ah;Roh, Dong-Kyu;Koh, Jong-Kwan;Kim, Jong-Hak
    • Korean Membrane Journal
    • /
    • v.10 no.1
    • /
    • pp.20-25
    • /
    • 2008
  • Proton conducting composite membranes were prepared by solution blending of poly(vinylidene fluoride-co-chlorotrifluoroethylene)-graft-poly(sulfopropyl methacrylate) (P(VDF-CTFE)-g-PSPMA) graft copolymer and heteropolyacid (HPA). The P(VDF-CTFE)-g-PSPMA graft copolymer was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of P(VDF-CTFE). FT-IR spectroscopy revealed that HPA nanoparticles were incorporated into the graft copolymer via hydrogen bonding interactions. The water uptake of membranes continuously decreased with increasing HP A concentration up to 45wt%, after which it slightly increased. It is presumably due to the decrease in number of water absorption sites due to hydrogen bonding interaction between the HP A particles and the polymer matrix. The proton conductivity of membranes increased with increasing HPA concentration up to 45wt%, resulting from both the intrinsic conductivity of HP A particles and the enhanced acidity of the sulfonic acid of the graft copolymer.

Kinetic Study on Aminolysis of Phenyl 2-Pyridyl Carbonate in Acetonitrile: Effect of Intramolecular H-bonding Interaction on Reactivity and Reaction Mechanism

  • Song, Ji-Hyun;Lee, Jae-In;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2081-2085
    • /
    • 2014
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for the reactions of phenyl 2- pyridyl carbonate (6) with a series of cyclic secondary amines in MeCN at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plot for the reaction of 6 is linear with ${\beta}_{nuc}$ = 0.54, which is typical for reactions reported previously to proceed through a concerted mechanism. Substrate 6 is over $10^3$ times more reactive than 2-pyridyl benzoate (5), although the reactions of 6 and 5 proceed through the same mechanism. A combination of steric hindrance, inductive effect and resonance contribution is responsible for the kinetic results. The reactions of 6 and 5 proceed through a cyclic transition state (TS) in which H-bonding interactions increase the nucleofugality of the leaving group (i.e., 2-pyridiniumoxide). The enhanced nucleofugality forces the reactions of 6 and 5 to proceed through a concerted mechanism. In contrast, the corresponding reaction of 4-nitrophenyl 2-pyridyl carbonate (7) proceeds through a stepwise mechanism with quantitative liberation of 4-nitrophenoxide ion as the leaving group, indicating that replacement of the 4-nitrophenoxy group in 7 by the PhO group in 6 changes the reaction mechanism (i.e., from a stepwise mechanism to a concerted pathway) as well as the leaving group (i.e., from 4-nitrophenoxide to 2-pyridiniumoxide). The strong electron-withdrawing ability of the 4-nitrophenoxy group in 7 inhibits formation of a H-bonded cyclic TS. The presence or absence of a H-bonded cyclic TS governs the reaction mechanism (i.e., a concerted or stepwise mechanism) as well as the leaving group (i.e., 2-pyridiniumoxide or 4-nitrophenoxide).

Kinetic Study on Aminolysis of Y-Substituted-Phenyl Picolinates: Effect of H-Bonding Interaction on Reactivity and Transition-State Structure

  • Kim, Min-Young;Kang, Tae-Ah;Yoon, Jung Hwan;Um, Ik-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2410-2414
    • /
    • 2014
  • A kinetic study is reported on nucleophilic substitution reactions of Y-substituted-phenyl picolinates (7a-7h) with a series of cyclic secondary amines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. Comparison of the kinetic results with those reported previously for the corresponding reactions of Y-substituted-phenyl benzoates (1a-1f) reveals that 7a-7h are significantly more reactive than 1a-1f. The Br${\o}$nsted-type plot for the aminolysis of 4-nitrophenyl picolinate (7a) is linear with ${\beta}_{nuc}=0.78$, which is typical for reactions proceeding through a stepwise mechanism with expulsion of the leaving group being the rate-determining step. The Br${\o}$nsted-type plots for the piperidinolysis of 7a-7h and 1a-1f are also linear with ${\beta}_{lg}=-1.04$ and -1.39, respectively, indicating that the more reactive 7a-7h are less selective than the less reactive 1a-1f to the leaving-group basicity. One might suggest that the enhanced reactivity of 7a-7h is due to the inductive effect exerted by the electronegative N atom in the picolinyl moiety, while the decreased selectivity of the more reactive substrates is in accord with the reactivity-selectivity principle. However, the nature of intermediate (e.g., a stabilized cyclic intermediate through the intramolecular H-bonding interaction for the reactions of 7a-7h, which is structurally not possible for the reactions of 1a-1f) is also responsible for the enhanced reactivity with a decreased selectivity.

DEVELOPMENT OF ANTICARIOGENIC COMPOSITE RESIN (항우식성 복합레진의 가능성)

  • Park, Jeong-Won
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.2
    • /
    • pp.65-68
    • /
    • 2010
  • Due to the improvement of the composite resin and esthetic desire of the patient, amalgam restoration has been replaced by composite resin. However, still there are many unsolved problems, for example, technique sensitivity, polymerization shrinkage stress and limited mechanical properties. These factors results in fracture of the restoration and secondary caries of the tooth. Also the use of the dental bonding system should be used for the retention of the restoration. In this paper, I want to talk about the present and the future of the remineralizing component released from dental composite resin to overcome the secondary caries and there possibility in the clinical use.

Synthesis of Carbon Nano Silicon Composites for Secondary Battery Anode Materials Using RF Thermal Plasma (RF 열플라즈마를 이용한 이차전지 음극재용 탄소나노실리콘복합소재 합성)

  • Soon-Jik Lee;Dae-Shin Kim;Jeong-Mi Yeon;Won-Gyu Park;Myeong-Seon Shin;Seon-Yong Choi;Sung-Hoo Ju
    • Korean Journal of Materials Research
    • /
    • v.33 no.6
    • /
    • pp.257-264
    • /
    • 2023
  • To develop a high capacity lithium secondary battery, a new approach to anode material synthesis is required, capable of producing an anode that exceeds the energy density limit of a carbon-based anode. This research synthesized carbon nano silicon composites as an anode material for a secondary battery using the RF thermal plasma method, which is an ecofriendly dry synthesis method. Prior to material synthesis, a silicon raw material was mixed at 10, 20, 30, 40, and 50 wt% based on the carbon raw material in a powder form, and the temperature change inside the reaction field depending on the applied plasma power was calculated. Information about the materials in the synthesized carbon nano silicon composites were confirmed through XRD analysis, showing carbon (86.7~52.6 %), silicon (7.2~36.2 %), and silicon carbide (6.1~11.2 %). Through FE-SEM analysis, it was confirmed that the silicon bonded to carbon was distributed at sizes of 100 nm or less. The bonding shape of the silicon nano particles bonded to carbon was observed through TEM analysis. The initial electrochemical charging/discharging test for the 40 wt% silicon mixture showed excellent electrical characteristics of 1,517 mAh/g (91.9 %) and an irreversible capacity of 133 mAh/g (8.1 %).

Preparation of Oriented MFI Zeolite Membranes (배향된 MFI 제올라이트 박막의 제조)

  • Song, Kyeong-Keun;Ha, Kwang
    • Korean Chemical Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.243-247
    • /
    • 2006
  • MFI zeolite membranes were prepared on anodic alumina (Anodisc) as support. First, silicalite-1(${\approx}1.2{\mu}m$) seed crystals were attached to the surface of the support via chemical bonding, and the a- and b-axis oriented zeolite membranes could be synthesized on the support coated with the monolayer of the seed crystals by secondary growth hydrothermal synthesis. The zeolite membranes prepared were characterized using scanning electron microscope and analyzed by X-ray diffraction.