• Title/Summary/Keyword: Second-order reliability method

Search Result 252, Processing Time 0.027 seconds

The Reliability Estimation of Pipeline Using FORM, SORM and Monte Carlo Simulation with FAD

  • Lee, Ouk-Sub;Kim, Dong-Hyeok
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2124-2135
    • /
    • 2006
  • In this paper, the reliability estimation of pipelines is performed by employing the probabilistic method, which accounts for the uncertainties in the load and resistance parameters of the limit state function. The FORM (first order reliability method) and the SORM (second order reliability method) are carried out to estimate the failure probability of pipeline utilizing the FAD (failure assessment diagram). And the reliability of pipeline is assessed by using this failure probability and analyzed in accordance with a target safety level. Furthermore, the MCS (Monte Carlo Simulation) is used to verify the results of the FORM and the SORM. It is noted that the failure probability increases with the increase of dent depth, gouge depth, operating pressure, outside radius, and the decrease of wall thickness. It is found that the FORM utilizing the FAD is a useful and is an efficient method to estimate the failure probability in the reliability assessment of a pipeline. Furthermore, the pipeline safety assessment technique with the deterministic procedure utilizing the FAD only is turned out more conservative than those obtained by using the probability theory together with the FAD. The probabilistic method such as the FORM, the SORM and the MCS can be used by most plant designers regarding the operating condition and design parameters.

Ultimate Strength Based Reliability of Corroded Ship Hulls (부식을 고려한 선각거더의 최종강도 신뢰성)

  • Paik, J.K.;Yang, S.H.;Kim, S.K.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.96-110
    • /
    • 1996
  • Aging ships can suffer structural damage due to corrosion, fatigue crack etc., and possibility of catastrophic failure of seriously damaged ships is very high. To reduce the risk of loss of ships due to hull collapse, it is essential to evaluate ultimate hull strength of aging ships taking into account various uncertainties associated with structural damages. In this paper, ultimate strength-based reliability analysis of ship structures considering wear of structural members due to corrosion is described. A corrosion rate estimate model for structural members is introduced. An ultimate limit state function of a ship hull is formulated taking into account corrosion effects. The model is applied to an existing oil tanker, and reliability index associated with hull collapse is calculated by using the second-order reliability method (SORM). Discussions on structure safety of corroded ships are made.

  • PDF

Reliability Based Design Optimization of the Softwater Pressure Tank Considering Temperature Effect (온도영향을 고려한 연수기 압력탱크의 신뢰성 최적설계)

  • Bae Chul-Ho;Kim Mun-Seong;Suh Myung-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.10
    • /
    • pp.1458-1466
    • /
    • 2004
  • Deterministic optimum designs that are obtained without consideration of uncertainties could lead to unrealiable designs. Such deterministic engineering optimization tends to promote the structural system with less reliability redundancy than obtained with conventional design procedures using the factor of safety. Consequently, deterministic optimized structures will usually have higher failure probabilities than unoptimized structures. This paper proposes the reliability based design optimization technique fur apressure tank considering temperature effect. This paper presents an efficient and stable reliability based design optimization method by using the advanced first order second moment method, which evaluates a probabilistic constraint for more accuracy. In addition, the response surface method is utilized to approximate the performance functions describing the system characteristics in the reliability based design optimization procedure.

Reliability Analysis of Reinforced Concrete Shear Wall Subjected to Biaxial Bending (이축 휨 모멘트를 받는 철근콘크리트 전단벽의 신뢰성 해석)

  • Park Jae Young;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.433-436
    • /
    • 2004
  • The safety of buildings is generally estimated by analyzing a plane frame ignoring a minor bending moment. In this paper, uncertainties of reinforced concrete shear wall subjected to a biaxial bending are considered. First, major parameters are selected from all parameters of general shear wall design to perform a reliability analysis in their practical ranges, means and standard derivations of selected design parameters for the reliability analysis are calculated by a data mining as a simulation method. The bi-section method is used to find inclined neutral axis and its limit state using MATLAB subjected to the concept on strength design method. The reliability index $\beta$ as a safety index is calculated based on AFOSM(Advanced First-Order Second Moment) method. Also, if target reliability index $\beta_T$ is decided by an engineer an amount of reinforcement can be calculated by subtracting the reliability index $\beta$ from the target reliability index $\beta_T$.

  • PDF

Reliability approach to three-dimensional groundwater flow analysis in underground excavation (지하굴착지반에서의 3차원 지하수흐름에 관한 신뢰성해석)

  • Jang, Yeon-Soo;Kim, Hong-Seok;Park, Joon-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.988-997
    • /
    • 2006
  • In this paper, a reliability-groundwater flow program is developed by coupling the 3-D finite element numerical groundwater flow program with first and second order reliability program. The numerical groundwater program developed called DGU-FLOW is verified by solving the examples of groundwater flow through the underground excavation and comparing the results with those of commercial MODFLOW 3D programs. Reliability routine of the program is also verified by comparing the probability of failure of the flow model from FORM/SORM with that of Monte-Carlo Simulation. The difference of out-flux and total head calculated near the bottom of the excavation using the deterministic 3D groundwater flow and the commercial programs was negligible. The reliability analysis of the groundwater flow showed that the probability of failure from the first and second order reliability method are quite close that of Monte-Carlo Simulation. Therefore, the developed program is considered effective for analyzing the groundwater flow with uncertainty in hydraulic conductivity of the soils.

  • PDF

Barrier Function Method in Reliability Based Design Optimization (장애함수법에 의한 신뢰성기반 최적설계)

  • Lee, Tae-Hee;Choi, Woon-Yong;Kim, Hong-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1130-1135
    • /
    • 2003
  • The need to increase the reliability of a structural system has been significantly brought in the procedure of real designs to consider, for instance, the material properties or geometric dimensions that reveal a random or incompletely known nature. Reliability based design optimization of a real system now becomes an emerging technique to achieve reliability, robustness and safety of these problems. Finite element analysis program and the reliability analysis program are necessary to evaluate the responses and the probabilities of failure of the system, respectively. Moreover, integration of these programs is required during the procedure of reliability based design optimization. It is well known that reliability based design optimization can often have so many local minima that it cannot converge to the specified probability of failure. To overcome this problem, barrier function method in reliability based design optimization is suggested. To illustrate the proposed formulation, reliability based design optimization of a bracket is performed. AMV and FORM are employed for reliability analysis and their optimization results are compared based on the accuracy and efficiency.

  • PDF

A study on Reliability Analysis for Plane Frame Structure (평면뼈대구조의 신뢰성해석에 관한연구)

  • 이중빈;신형우
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1989.10a
    • /
    • pp.34-39
    • /
    • 1989
  • Recent trends in design standards development have encouraged the use of probabilistic limit sate design concepts. Reliability analysis adopted in those advanced countries have the potentials that they afford for symplifying the design Process arid placing it on a consistent reliability based for various construction materials. This study is proposed in the reliability analysis of plane frame structures using second-order moment method(Level-II they). Lind-Hasofer's minimum distance method is use in the derivation of an mathematical algorithm as well as an determination of Correlation cofficients, reliability index and total reliability index depending on the multiple failure modes. In addition. This study is employed as a practical tool for the approximate reliability analysis. Results of the numerincal analysis showed that the difference between the reliability index of the failure probability of the multiple failure modes and the total reliability index of the failure probability with the simultaneous failure modes deviated nearly 3∼10% depending on tile performance functions.

  • PDF

Reliability-Based Assessment of Structural Safety of Regid-Frame-Typed Segmental PSC Box Girder Bridges Erected by the FCM during Construction (FCM에 의한 라멘식 세그멘탈 PSC박스거더 교량의 신뢰성에 기초한 시공간 구조안전도평가)

  • Cho, Hyo-Nam;Joo., Hwan-Joong;Park, Kyung-Hoon;Moon, Kyung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.131-140
    • /
    • 2002
  • In this paper, a limit state model based on the analysis of structural behavior of segmental prestressed concrete box girder bridges and reliability-based safety assessment method are proposed for the bridges erected by free cantilever method. Strength limit state models for prestressed concrete box girder and rigid-frame type columns are developed for a structural safety assessment during construction. Based on the proposed limit state models, the reliability of the bridge is evaluated by using the Advanced First Order Second Moment method. The proposed model and method are applied to the Seo-Hae Grand Bridge built by FCM in order to verify its effectiveness in the safety assessment during construction of the kind of bridges. The sensitivity analyses of the main parameters are also performed in order to identify the important factors that need to be controlled for the safety of the bridges during construction.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • v.7 no.6
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

Reliability Analysis of Cantilever Retaining Wall Using Multiple Failure Modes (다중거동함수에 의한 T형 옹벽의 신뢰도 해석)

  • Park, Chun-Su;Song, Yong-Seon;Kim, Yeong-Pil
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.15-24
    • /
    • 1988
  • To identify the stability of cantilever retaining wall in safe state by the deterministic method, these potential modes of such geotechnical failures as bearing capacity, horizontal sliding and overturning are analysed using Advanced First Order Second Moment (AFOSM) method. All design variables are assumed of the normal distribution and to be statistically independent. Considering the correlations between the single modes, structural system reliability index is 2. 05. Even if the safety factors are larger than the required value in the codes' by the conventional deterministic method, the system reliability of this structure may not be Judged to be safe state since the system reliability index is much lower than general value of 3.

  • PDF