• Title/Summary/Keyword: Second-order nonlinear optical material

Search Result 8, Processing Time 0.027 seconds

Computer Simulation Analysis on 2nd Order Optical Nonlinearity in Poled Silica Glass (Poling된 실리카 유리의 2차 비선형 광특성에 대한 전산모사 해석)

  • 이승규;유웅현;신동욱;정용재
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2001.02a
    • /
    • pp.230-231
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period time with metal blocking electrodes. In this research, a theoretical calculation of the nonlinear optical property caused by the space charge polarization is performed, and a model of a numerical analysis to predict the small change in nonlinear optical property as functions of time and space is provided.

  • PDF

Nonlinear Optical Zeolite Films for Second and Third Harmonic Generation

  • Kim, Hyun-Sung;Pham, Tung Thanh;Yoon, Kyung-Byung
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1443-1454
    • /
    • 2011
  • Methods to prepare novel second-order nonlinear optical (2O-NLO) materials composed of all-silica zeolite (silicalite-1) and a series of 2O-NLO molecules having high second order hyperpolarizability constants (${\beta}$ values) are reviewed. These methods include the development of novel methods to incorporate a series of hemicyanine (HC) molecules into the channels of silicaite-1 films in uniform orientations. The first method is to incorporate HC molecules tethered with long alkyl chains (octadecyl or longer) into the silicalite-1 channels with the long alkyl chain side first through the hydrophobic-hydrophobic interaction between the long alky chains and the silicalite-1 channels. The second method is to incorporate the HC molecule tethered with a medium length alkyl chain (nonyl) into the silicalite-1 channels with the medium length alkyl chain side first through hydrophobic-hydrophobic interaction between the medium length alky chain in the photoexcited state and the silicalite-1 channels. The third method is to incorporate the HC molecule tethered with propionic acid into the silicalite-1 channels with the propionic acid side last mediated by a tetrabultylammonium cation ion-paired to the propionate unit. A method to prepare a novel third-order nonlinear optical (3O-NLO) material composed of zeolite-Y and PbS or PbSe quantum dots is also reviewed. This Account thus describes a promising new direction to which the search for highly sensitive 2O-NLO and 3O-NLO materials has to be conducted and a new direction to which zeolite research and applications have to be expanded.

The Relaxation of Nonlinear Optical Properties in a Poled Polymer (극화된 고분자에서 비선형 광학특성의 완화)

  • Jung, Chi-Sup
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.6
    • /
    • pp.491-496
    • /
    • 2010
  • The relaxation behavior of aligned electric dipoles in a mixed polymer of P2ANS with P(VDF-TrFE) is studied with optical second harmonic generation (SHG). In this work, a macroscopic noncentrosymmetry of the spin coated film was achieved by an electrical poling. The relaxation of induced polar order of nonlinear optic(NLO) chromophores after poling leads to an insufficient long-term stability of NLO properties. In this work, we develop a new technique to suppress such kind of dipole relaxation in a poled polymer. We found that the poled dipoles in a NLO polymer were effectively immobilized by the internal electric field created by a thermally annealed ferroelectric polymer. The long-term stability in a mixed system of NLO polymer/ferroelectric polymer was successively accomplished by a series of thermal treatments applied to the mixed polymer system at a temperature of $140^{\circ}C$ for at least 1hour after poling.

Computer Simulation on the Poling Mechanism for the Control of 2nd Order Optical Nonlinearity in Silica Glass (2차 비선형 광특성의 제어를 위한 실리카 유리의 전기분극 기구 전산모사)

  • Yu, Ung-Hyeon;Lee, Seung-Gyu;Sin, Dong-Uk;Jeong, Yong-Jae
    • Korean Journal of Materials Research
    • /
    • v.11 no.3
    • /
    • pp.207-214
    • /
    • 2001
  • Silica glass is a core material for optical fiber in optical telecommunications, but its centrosymmetry eliminates the second order nonlinearity. But it is experimentally well known that the space charge polarization induces the Second Harmonic Generation (SHG) when a strong DC voltage is applied to silica glass for a long period of time with metal blocking electrodes. In this report, the results of a theoretical calculation of the nonlinear optical property caused by the space charge polarization, and a model of a numerical analysis to predict the small chance in nonlinear optical property as functions of time and space are provided. Assuming that amorphous silica is a solid state electrolyte and sodium ion is the only mobile charge carrier, 'Finite Difference Method' was employed for modeling of numerical analysis. The distributions of the concentration of sodium ion and electric field as functions of a normalized length of the specimen and a normalized applied voltage were simulated.

  • PDF

Synthesis and Properties of the New Photorefractive Material (새로운 광굴절재료의 제작 및 특성)

  • Min, Wan Ki;Kim, Nam Oh;Sasabe, Hiroyuki
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.142-148
    • /
    • 2002
  • Considerable progress has been made in organic photorefractive materials, since the first observation of photorefractive phenomena from organic materials. Within recent years, a large number of organic photorefractive materials, especially amorphous materials, have been developed based on polymeric composites, fully functional polymers and the multi-functional chromophore approach. Among these organic photorefractive materials, some of them containing carbazole components as a charge transporting function have been demonstrated to exhibit high performance photorefractive effects. The carbazole building blocks with charge transporting function or multifunctions play a very important role in photorefraction. In this paper, it confirmed that acceptor-substituted carbazoles show the multifunctionality both of photoconductivity and electro-optic(EO) activity and photorefractive materials newly can be developed with acceptor-substituted carbazoles.

Liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified sol-gel materials (유/무기 졸-겔 재료에 비선형광학 물질의 배향특성에 대한 액정효과)

  • Baek, In-Chan;Seok, Sang-Il;Jin, Moon-Young;Lee, Chang-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.132-132
    • /
    • 2003
  • Second-order nonlinear optical(NLO) materials have been extensively studied for applications in photonic devices, such as frequency doubling and electro-optical(EO) modulation, because of their large optical nonlinearity, excellent processibility, low dielectric constant, and high laser damage thresholds. The poling behaviour of NLO chromophore in organic/inorganic matrixes showed the randomization of poled NLO chromophore in the absence of poling Held. The liquid crystal molecules in a droplet showed a long-range orientational order along a director. Therefore, liquid crystal effects on poling behaviour of NLO chromophore dispersed in organically modified inorganic sol-gel materials were investigated. Using sol-gel process for the development of NLO material has received increasing attention, Organically modifked inorganic NLO sol-Eel materials are obtained via incorporation of the organic NLO active chromophore into an alkoxysilane based inorganic network. One of the most important thing in this works was that tetraethoxysilane(TEOS) and methyltrimathoxysilane(HTMS) were used as precursor followed by hydrolysis and condensation without using any acidic catalyst during the process. The NLO chromophores in the liquid crystal nanodomains were well mixed with I/O hybrid matrix, deposited on transparent ITO-coated glasses. The poling behaviour of liquid crystal effects of NLO chromophore dispersed in I/O hybrid matrix were investigated by UV-vis spectroscopy. Size distribution and morphology of the NLO chromophores doped in the liquid crystal nanodomains dispersed in I/O hybrid matrix were investigated by SEM.

  • PDF