• 제목/요약/키워드: Second order nonlinear differential equations

검색결과 56건 처리시간 0.02초

A REFINEMENT OF LYAPUNOV-TYPE INEQUALITY FOR A CLASS OF NONLINEAR SYSTEMS

  • Kim, Yong-In
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제18권4호
    • /
    • pp.329-336
    • /
    • 2011
  • Some new Lyapunov-type inequalities for a class of nonlinear differential systems, which are natural refinements and generalizations of the well-known Lyapunov inequality for linear second order differential equations, are given. The results of this paper cover some previous results on this topic.

A NEW METHOD FOR SOLVING THE NONLINEAR SECOND-ORDER BOUNDARY VALUE DIFFERENTIAL EQUATIONS

  • Effati, S.;Kamyad, A.V.;Farahi, M.H.
    • Journal of applied mathematics & informatics
    • /
    • 제7권1호
    • /
    • pp.183-193
    • /
    • 2000
  • In this paper we use measure theory to solve a wide range of second-order boundary value ordinary differential equations. First, we transform the problem to a first order system of ordinary differential equations(ODE's)and then define an optimization problem related to it. The new problem in modified into one consisting of the minimization of a linear functional over a set of Radon measures; the optimal measure is then approximated by a finite combination of atomic measures and the problem converted approximatly to a finite-dimensional linear programming problem. The solution to this problem is used to construct the approximate solution of the original problem. Finally we get the error functional E(we define in this paper) for the approximate solution of the ODE's problem.

ANALYSIS OF THE VLASOV-POISSON EQUATION BY USING A VISCOSITY TERM

  • Choi, Boo-Yong;Kang, Sun-Bu;Lee, Moon-Shik
    • 충청수학회지
    • /
    • 제26권3호
    • /
    • pp.501-516
    • /
    • 2013
  • The well-known Vlasov-Poisson equation describes plasma physics as nonlinear first-order partial differential equations. Because of the nonlinear condition from the self consistency of the Vlasov-Poisson equation, many problems occur: the existence, the numerical solution, the convergence of the numerical solution, and so on. To solve the problems, a viscosity term (a second-order partial differential equation) is added. In a viscosity term, the Vlasov-Poisson equation changes into a parabolic equation like the Fokker-Planck equation. Therefore, the Schauder fixed point theorem and the classical results on parabolic equations can be used for analyzing the Vlasov-Poisson equation. The sequence and the convergence results are obtained from linearizing the Vlasove-Poisson equation by using a fixed point theorem and Gronwall's inequality. In numerical experiments, an implicit first-order scheme is used. The numerical results are tested using the changed viscosity terms.

MIXED BOUNDARY VALUE PROBLEMS FOR SECOND ORDER DIFFERENTIAL EQUATIONS WITH DIFFERENT DEVIATED ARGUMENTS

  • Zhang, Lihong;Wang, Guotao;Song, Guangxing
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.191-200
    • /
    • 2011
  • This paper deals with second order differential equations with different deviated arguments ${\alpha}$(t) and ${\beta}$(t, ${\mu}$(t)). We investigate the existence of solutions of such problems with nonlinear mixed boundary conditions. To obtain corresponding results we apply the monotone iterative technique and the lower-upper solutions method. Two examples demonstrate the application of our results.

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • 대한수학회지
    • /
    • 제39권2호
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

AN ABS ALGORITHM FOR SOLVING SINGULAR NONLINEAR SYSTEMS WITH RANK ONE DEFECT

  • Ge, Ren-Dong;Xia, Zun-Quan
    • Journal of applied mathematics & informatics
    • /
    • 제9권1호
    • /
    • pp.167-183
    • /
    • 2002
  • A modified discretization ABS algorithm for solving a class of singular nonlinear systems, F($\chi$)=0, where $\chi$, F $\in$ $R^n$, is presented, constructed by combining a discretization ABS algorithm arid a method of Hoy and Schwetlick (1990). The second order differential operation of F at a point is not required to be calculated directly in this algorithm. Q-quadratic convergence of this algorithm is given.

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • 제49권8호
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.