• Title/Summary/Keyword: Second Wall Creek Sand

Search Result 1, Processing Time 0.014 seconds

Prediction of Reservoir Properties Using Extended Elastic Impedance Inversion (확장 탄성 임피던스 역산을 이용한 저류층 물성 예측)

  • Kim, Hyeonju;Lee, Gwang H.;Moon, Seonghoon
    • Economic and Environmental Geology
    • /
    • v.48 no.2
    • /
    • pp.115-130
    • /
    • 2015
  • Extended elastic impedance (EEI) is an extension of elastic impedance (EI) which is a generalization of acoustic impedance (AI) for nonzero angles of incidence and can be tuned to be proportional to reservoir properties. In this study, we evaluated EEI inversion by estimating the P-($V_p$) and S-wave velocities ($V_s$), P-wave to S-wave velocity ratio ($V_p/V_s$), and Poisson's ratio of the Second Wall Creek Sand of the Teapot Dome field, Wyoming, USA. We also applied the EEI inversion technique to estimate porosity, gamma-ray values, and density of the Second Wall Creek Sand. Data used in the study include 3-D pre-stack seismic data from the southern part of the field and four wells, selected from a large well database. The $V_s$ logs at the wells were constructed from the $V_p$ logs using the empirical relationships. The percent prediction errors for the four velocity properties are less than about 5% except for Poisson's ratio at one well, supporting that the EEI inversion can be used in the prediction of rock properties. However, the results from the EEI inversion analysis of porosity, gamma-ray values, and density at the wells were unsatisfactory and thus these properties, which are not directly computed from velocities, may not be suitable for EEI inversion.