• Title/Summary/Keyword: Second Throat Diffuser

Search Result 26, Processing Time 0.019 seconds

NUMERICAL STUDY OF MODEL AND WALL INTERFERENCE IN A SUPERSONIC WIND TUNNEL (초음속 풍동내에서의 모델과 벽면 간섭에 관한 수치적 연구)

  • Hong S. K.;Ahn H. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.213-218
    • /
    • 1995
  • 마하수 4일때 초음속 풍동의 벽면과 모델지지부의 간섭에 관해 연구하였다. 특히 모델지지부 주위에서의 충격파 형성과 sting, strut 그리고 second throat에서의 반사 충격파의 상호 작용에 연구의 촛점을 두었다. 수치 기법은 내재적 플럭스 차분 분할기법 (implicit flux-difference splitting technique)을 사용하였다. 2차원과 3차원 유동해석 결과로부터 모델지지부 후류의 유동에 미치는 diffuser 출구 경계조건의 영향을 알아보았다.

  • PDF

Analytical Study of the Subsonic/Sonic Ejector Flows (아음속/음속 이젝터의 유동에 관한 해석적 연구)

  • 최보규;김희동;김덕줄
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to predict the performance of subsonic/sonic ejector system and to provide fundamental data for a cost effective design, one dimensional gas dynamics theory was applied to the subsonic and sonic ejector systems with the second throat. In the current theoretical analyses, ejector throat area ratio, mass flow ratio and secondary stagnation pressure were derived as a function of the operating pressure ratio of the ejector, and the discharge coefficient of the primary nozzle and the loss coefficient of the diffuser were incorporated into the whole performance of the ejector system. The results of theoretical analysis can be applied to practical industrial use of subsonic and sonic gas ejector systems.

  • PDF

CFD Study of the Vacuum-Pump Type Subsonic/Sonic Ejector Flows (진공 펌프형 아음속/음속 이젝터 유동에 관한 수치 해석적 연구)

  • 김희동;권오식;최보규
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.26-35
    • /
    • 2000
  • This paper depicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equations in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for the subsonic/sonic ejector systems which are applicable to industrial vacuum pumps, the ejector throat area, the mixing section configuration, and the ejector throat length are changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratios, the effects of the design factors on the vacuum performance of the secondary chamber are discussed.

  • PDF

Numerical Study on Supersonic Flow in the Second Throat Ejector-Diffuser System (이차목 이젝터/디퓨저 시스템을 통하는 초음속 유동에 관한 수치해석적 연구)

  • 김희동;이영기;서태원;김윤곤
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.14-14
    • /
    • 1998
  • The ejector is a device which employs a high-velocity primary motive fluid to entrain and accelerate a slower moving secondary suction fluid. The resulting kinetic energy of the mixture is subsequently used for self-compression to a higher pressure, thus performing the function of a compressor. The outstanding advantages of the ejectors are simplicity and reliability. However the industrial use of ejectors has been confined mainly to very particular cases of operation. The experimental results obtained so far were insufficient to be made use of general cases. Large-sized modern ejectors, mainly driven by high powered air-compressors and designed for very wide ranges of operating conditions, cannot be based on the earlier research results, if we wish to be sure of the final outcome.

  • PDF

Study of the Operation Characteristics of the Supersonic Steam Ejector System (초음속 증기 이젝터 시스템의 작동 특성에 관한 연구)

  • Kim, H.D.;Lee, J.H.;Woo, S.H.;Choi, B.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.329-334
    • /
    • 2001
  • In order to investigate the operating characteristics of a supersonic steam ejector, the axisymmetric, compressible, Reynolds-averaged, Navier-Stokes computations are performed using a finite volume method. The secondary and back pressures of the ejector system with a second throat are changed to investigate their effects on the suction mass flow. Three operation modes of the steam ejector system, the critical mode, subcritical mode and back flow mode, are discussed to predict the critical suction mass flow. The present computations are validated with some experimental results. The secondary and back pressures of the supersonic steam ejector significantly affect the critical suction mass flow. The present computations predict the experimented critical mass flow with fairly good accuracy. A good correlation is obtained for the critical suction mass flow. The present results show that provided the primary nozzle configuration and secondary pressure are known, we can predict the critical mass flow with good accuracy.

  • PDF

A Numerical Study on Performance Characteristics of STED with various Pressure Ratios and Cone Shapes using Burnt Gas Properties (연소가스 물성을 이용한 이차목 디퓨저의 압력비와 램 구조물 형상에 따른 성능 특성에 대한 수치적 연구)

  • Yu, Seongha;Jo, Seonghwi;Kim, Hongjip;Ko, Youngsung;Na, Jaejeong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.5
    • /
    • pp.66-72
    • /
    • 2018
  • A numerical study was conducted to investigate the performance characteristics of a STED with various pressure ratios (PRs) and cone shapes. Due to momentum loss, the pressure in vacuum chamber increased with cone angle for a PR of 75. Also, the STED is started between PRs of 36 and 37 in the case of a cone angle of $15^{\circ}$ and a blockage ratio (BR) of 15%. The results for various PRs and cone shapes are presented, and the optimal cone shape is found to have a cone angle of between $5{\sim}20^{\circ}$ and a BR of between 15~40%.