• Title/Summary/Keyword: Second Harmonic Filtering

Search Result 13, Processing Time 0.017 seconds

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.6
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

Design and Realization of Phase Sensitive Detector Circuitry of Two-Channel Ring-Core Flux-Gate Compass (2-체널 링-코어 플럭스-게이트 콤파스의 위상검출 회로 설계와 구현에 관한 연구)

  • Yim, Jeong-Bin
    • Journal of Navigation and Port Research
    • /
    • v.26 no.1
    • /
    • pp.127-136
    • /
    • 2002
  • This paper Presents a discussion on the design and realization for the Phase Sensitive Defector (PSD) circuitry of Flu$\chi$-gate Compass that gives direction information to the Directional Frequency Analysis and Recording (DIFAR) Sonobuoy in Air Anti-Submarine Warfare. PSD circuitry is realized with Twin-T RC networked active band-pass filter. Results of a performance test the PSD circuitry shows that the effectiveness of band-pass filtering of desired $2F_0$ second harmonic signal, which is Pro- portional to the direction of earth's magnetic field. This resulted in the extraction of direction information.

Power Noise Suppression Methods Using Bead with Spiral Resonator (비드와 나선형 공진기를 이용한 전원 노이즈 저감 방안 연구)

  • Chung, Tong-Ho;Kang, Hee-Do;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.2
    • /
    • pp.152-160
    • /
    • 2013
  • In this paper, to the aim of wideband SSN(Simultaneous Switching Noise) suppression characteristic, investigation of spiral resonator are used in conjunction with bead which is commonly used for noise suppression method. Bead works effectively to suppress the power noise up to the first harmonic of fundamental frequency, 0.8 GHz, and spiral resonator suppress noise well in the frequency range of SRF(Self Resonance Frequency) which is inversely proportional to the length of spiral. Thus, when bead used in conjunction with a spiral the noise suppression characteristic is determined by the one of higher impedance element of the two in the frequency range and achieves more broadband filtering characteristic. The case for using 22 nH bead turns out 4.8, 2.0, 0, and, 0.6 dB, and the case for using 22 nH bead in conjunction with 3-turns spiral achieves more wideband characteristic of 9.5, 8.3, 6.1, and 9.9 dB power noise suppression performances at the first, second, third, and fourth harmonics, respectively. The peak-to-peak voltage levels decrease from 76 mV to 56 mV using 22 nH bead, and the level decrease rapidly to 34 mV when using in conjunction with bead and 3-turn spiral. Thus more wideband SSN suppression characteristic can be achieved using bead with spiral.