• Title/Summary/Keyword: Second Crack

Search Result 309, Processing Time 0.022 seconds

Microstructurally sensitive crack closure (微視組織에 敏感한 균열닫힘 현상)

  • 김정규;황돈영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.898-905
    • /
    • 1986
  • In order to obtain the microstructure improving fatigue crack propagation resistance of steels, fatigue crack propagation behavior of martensite-ferrite dual phase steels is investigated in terms of crack deflection and crack closure. The results obtained are as follows; (1) .DELTA.K$_{th}$ and fatigue crack propagation resistance in low .DELTA.K region increases with increasing hardness of second phase. But the difference of this crack propagation resistance decreases with increasing .DELTA.D. (2) In low .DELTA.K region, crack closure increases with increasing hardness of second phase, when the materials have all the sam volume fractionof second phase, or when yield strengths are similar in all materials. (3) These crack closure can be explained by fracture surface roughness due to crack deflection.n.

Behavior of Initiation and Propagation of Fatigue Crack under Periodic Overstressing (In the case of Fatigue Limit Stresses) (과대, 과소 응력하에서의 피로크랙 발생거동 (피로한도 응력을 중심으로))

  • 송남홍;원시태
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.6
    • /
    • pp.1839-1851
    • /
    • 1991
  • Fatigue crack behavior is studied through the two-level rotary bending test with the deep non-through radial holed notch specimens of low carbon steels(SM22C). The main factors investigated are the effects of the damage zone size around crack tip and phenomena of closing or opening of the crack tip. Obtained results are summarized as follows. Fatigue crack behavior in second level stressing slightly lower than fatigue limit is closely related to the size of damage zone produced by the first level stress higher than fatigue limit and to the phenomena of crack closing and opening for the second level stress. The non-propagating crack limit condition depends upon the crack length l$_{1}$ propagated under the first level stress and the magnitude of second level stress .sigma.$_{2}$ lower than the fatigue limit. The non-propagating crack limit condition is expressed by following eq. $\sigma_2^{6.1}{\times}l_{1}=7.35{\times}10^{6}[(kg_{f}mm^{6.1}(mm)]$

Crack Growth Analysis and Crack Arrest Design of Stiffened Panels(I) - Numerical Approaches to Crack Arrest Design Chart (보강판의 균열거동해석과 Crack Arrest 설계(I) - Crack Arrest 설계기준의 수치해석)

  • Rhee, Eui-Jong;Rhee, Hwan-Woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.2
    • /
    • pp.43-49
    • /
    • 2005
  • The purpose of a fatigue crack arrest design is to prevent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flanges, crack arrest is possible; arrest occurring when the fatigue crack reaches the second element. In the present work, a numerical analysis was carried out to estimate the effect of shape parameters on fatigue crack growth and arrest behavior of integrally stiffened panels. Based on these results, a set of fatigue crack arrest design chart is presented as "non-dimensional arrest load - thickness ratio" relationship.

  • PDF

Effect of Width and Thickness Ratio on the Fatigue Crack Arrest Behavior of SA-508 Pressure Vessel Steel Variable Thickness Plates (SA-508 압력용기용강 변후재의 피로균열 Arrest 거동에 대한 변후 형상비의 영향)

  • 이환우;이갑래;최용식
    • Journal of the Korean Society of Safety
    • /
    • v.6 no.4
    • /
    • pp.45-52
    • /
    • 1991
  • The purpose of a fatigue crack arrest desing is to prvent a fatigue fracture of machine and structure resulted from unstable crack growth. In all cases of load transfer to second elements such as stringers, doublers or flangers, crack arrest is possible; arrest occuring when the fatigue crack reaches the second element. In the present work, the possibility of crack arrest and the design criterion of fatigue crack arrest in the variable thickness plates are examined numericaiiy by using fatigue crack arrest thresthod $\Delta$K$_{th}$of SA-508 reactor vessel steel and stress intensity factor which was obtained in the previous work as a result of 3-dimensional finite element analysis for CT type variable thickness plates having discontinuous interface.e.

  • PDF

Finite Element Analysis of Harmonics Generation by Nonlinear Inclusion

  • Yang, Seung-Yong;Kim, No-Hyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.6
    • /
    • pp.564-568
    • /
    • 2010
  • When ultrasound propagates to a crack, transmitted and reflected waves are generated. These waves have useful information for the detection of the crack lying in a structure. When a crack is under residual stress, crack surfaces will contact each other and a closed crack is formed. For closed cracks, the fundamental component of the reflected and transmitted waves will be weak, and as such it is not easy to detect them. In this case, higher harmonic components will be useful. In this paper, nonlinear characteristic of a closed crack is modeled by a continuum material having a tensile-compressive unsymmetry, and the amplitude of the second harmonic wave was obtained by spectrum analysis. Variation of the second harmonic component depending on the nonlinearity of the inclusion was investigated. Two-dimensional plane strain model is considered, and finite element software ABAQUS/Explicit is used.

Analysis of Inclined Crack Extension in Orthotropic Solids Under Biaxial Loading (2축하중을 받는 직교이방성체내 경사균열진전의 해석)

  • Lim, Won-Kyun;Choi, Seung-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.993-1000
    • /
    • 2002
  • The objective of this work is to develop the capability to analyze accurately the mixed-mode propagation of a crack in composite structures with elastic orthotropic material stiffness properties and anisotropic material strength characteristics. In order to develop the capability to fully analyze fracture growth and failure in anisotropic structures, we examined the fundamental problem of mixed mode fracture by carrying out the analysis on orthotropic materials with an inclined crack subject to biaxial loading. Our goal here is to include an additional term in the asymptotic expansion of the crack tip stress field and to show that the direction of crack initiation can be significantly affected by that term. We employ the normal stress ratio theory to predict the direction of crack extension. It is shown that the angle of crack extension can be altered by horizontal loads and the use of second order term in the series expansion is important f3r the accurate determination of crack growth direction.

Nonlinear Time Reversal Focusing and Detection of Fatigue Crack

  • Jeong, Hyun-Jo;Barnard, Dan
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2012
  • This paper presents an experimental study on the detection and location of nonlinear scattering source due to the presence of fatigue crack in a laboratory specimen. The proposed technique is based on a combination of nonlinear elastic wave spectroscopy(NEWS) and time reversal(TR) focusing approach. In order to focus on the nonlinear scattering position due to the fatigue crack, we employed only one transmitting transducer and one receiving transducer, taking advantage of long duration of reception signal that includes multiple linear scattering such as mode conversion and boundary reflections. NEWS technique was then used as a pre-treatment of TR for spatial focusing of reemitted second harmonic signal. The robustness of this approach was demonstrated on a cracked specimen and the nonlinear TR focusing behavior is observed on the crack interface from which the second harmonic signal was originated.

Analysis of Mixed Mode Crack Extension in Anisotropic Solids (이방성재료내 혼합모드균열의 진전 해석)

  • 임원균;강석진;진영균
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.301-308
    • /
    • 2001
  • The problem of predicting crack propagation in anisotropic solids which is a subject of considerable practical importance is examined. The effect of the second term in the asymptotic expansion of the crack tip stress field on the direction of initial crack extension is made explicitly. We employ the normal stress ratio theory to determine values for the direction of initial crack extension. The theoretical analysis is performed for the wide range of the anisotropic material properties. It is shown that the use of second order term in the series expansion is essential for the accurate determination of crack growth direction in anisotropic solids.

  • PDF

MODIFIED LAGRANGE FUNCTIONAL FOR SOLVING ELASTIC PROBLEM WITH A CRACK IN CONTINUUM MECHANICS

  • Namm, Robert V.;Tsoy, Georgiy I.;Woo, Gyungsoo
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.1353-1364
    • /
    • 2019
  • Modified Lagrange functional for solving an elastic problem with a crack is considered. Two formulations of a crack problem are investigated. The first formulation concerns a problem where a crack extending to the outer boundary of the domain. In the second formulation, we consider a problem with an internal crack. Duality ratio is established for initial and dual problem in both cases.

Study on corrosion fatigue of high strength steel (고장력강의 부식피로에 관한 연구)

  • 유헌일;천기정;택목양삼
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.32-44
    • /
    • 1983
  • In case of $K_{Imax}$ < $K_{Iscc}$, the corrosion fatigue of high strength steel in 0.1N $H_{2}$S $O_{4}$ solution and 3.5% salt water is as follows. 1. The fatigue life shortens in order of 3.5% salt water and 0.1N $H_{2}$S $o_{4}$ solution. 2. The fatigue crack growth rate in air is obtained as the following equation. (dc/dN)$_{atr}$=7.23*10$^{-6}$ (.DELTA. K)$^{2.23}$ 3. The corrosion fatigue crack growth rate in environment is divided into three regions, that is, First Region, Second Region and Third Region from the small cyclic stress intensity. 4. The formation rate of the active surface on metal is slower than the mechano-chemical reaction rate in First Region. The crack growth rate depends on time and the cyclic stress intensity and is expressed as the following equation. (dc/dN)$_{I}$=C(/DELTA. K)$^{\delta}$ 5. The formation rate of the active surface is faster than the mechano-chemical reaction rate in Second Region and the synergistic effect by stress and corrosion becomes slow. In case the fatigue load is large, we have the critical crack growth rate which is not related to the cyclic stress intensity. 6. The corrosion crack growth rate by the mechano-chemical reaction is the same in $H_{2}$S $O_{4}$ solution and salt water, so Hydrogen accelerates the crack growth. 7. The environment has no effect on the corrosion fatigue crack growth rate in Third Region. 8. In First Region and Second Region, dimple is observed on the fatigue fracture surface in 0.1N $H_{2}$S $O_{4}$ solution. 9. The striation is observed in any environment as in air in Third Region and its interval approximately coincide with the crack growth rate.ate.e.e.

  • PDF