• Title/Summary/Keyword: Secchi Depth

Search Result 50, Processing Time 0.029 seconds

Validation of the semi-analytical algorithm for estimating vertical underwater visibility using MODIS data in the waters around Korea

  • Kim, Sun-Hwa;Yang, Chan-Su;Ouchi, Kazuo
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.6
    • /
    • pp.601-610
    • /
    • 2013
  • As a standard water clarity variable, the vertical underwater visibility, called Secchi depth, is estimated with ocean color satellite data. In the present study, Moderate Resolvtion Imaging Spectradiometer (MODIS) data are used to measure the Secchi depth which is a useful indicator of ocean transparency for estimating the water quality and productivity. To estimate the Secchi depth $Z_v$, the empirical regression model is developed based on the satellite optical data and in-situ data. In the previous study, a semi-analytical algorithm for estimating $Z_v$ was developed and validated for Case 1 and 2 waters in both coastal and oceanic waters using extensive sets of satellite and in-situ data. The algorithm uses the vertical diffuse attenuation coefficient, $K_d$($m^{-1}$) and the beam attenuation coefficient, c($m^{-1}$) obtained from satellite ocean color data to estimate $Z_v$. In this study, the semi-analytical algorithm is validated using temporal MODIS data and in-situ data over the Yellow, Southern and East Seas including Case 1 and 2 waters. Using total 156 matching data, MODIS $Z_v$ data showed about 3.6m RMSE value and 1.7m bias value. The $Z_v$ values of the East Sea and Southern Sea showed higher RMSE than the Yellow Sea. Although the semi-analytical algorithm used the fixed coupling constant (= 6.0) transformed from Inherent Optical Properties (IOP) and Apparent Optical Properties (AOP) to Secchi depth, various coupling constants are needed for different sea types and water depth for the optimum estimation of $Z_v$.

Water quality observation using Principal Component Analysis

  • Jeong, Jong-Chul;Yoo, Sing-Jae
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.58-63
    • /
    • 1998
  • The aim of the present study is to define and tentatively to interpret the distribution of polluted water released from Lake Sihwa into Yellow Sea using Landsat TM. Since the region is an extreme case 2 water, empirical algorithms for chlorophyll-a and suspended sediments have limitations. This work focuses on the use of multi-temporal Landsat TM. We applied PCA to detect evolution of spatial feature of polluted water after release from the lake. The PCA results were compared with in situ data, such as chlorophyll-a, suspended sediments, Secchi disk depth (SDD), surface temperature, radiance reflectance at six bands. The in situ remote sensing reflectance was analysed with PCA. On the basis of these In situ data we found good correlation between first Principal Component and Secchi disk depth ($R^2$=0.7631), although other variables did not result in such a good correlation. The problems in applying PCA techniques to multi-spectral remote sensed data are also discussed.

  • PDF

Multi-temporal Remote Sensing Data Analysis using Principal Component Analysis (주성분분석을 이용한 다중시기 원격탐사 자료분석)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.3
    • /
    • pp.71-80
    • /
    • 1999
  • The aim of the present study is to define and tentatively to interpret the distribution of polluted water released from Lake Sihwa into the Yellow Sea using Landsat TM. Since the region is an extreme Case 2 water, empirical algorithms for detecting concentration of chlorophyll-a and suspended sediments have limitations. This work focuses on the use of multi-temporal Landsat TM data. We applied PCA to detect evolution of spatial feature of polluted water after release from the lake Sihwa. The PCA results were compared with in situ data, such as chlorophyll-a, suspended sediments, Secchi disk depth(SDD), surface temperature, remote sensing reflectance at six channel of SeaWiFS. Also, the in situ remote sensing reflectance obtained by PRR-600(Profiling Reflectance Radiometer) was compared with PCA results of Landsat TM data sets to find good correlation between first Principal Component and Secchi disk depth($R^2$=0.7631), although other variables did not result in such a good correlation. Therefore, Problems in applying PCA techniques to multi-spectral remotely sensed data were also discussed in this paper.

  • PDF

Variations of Secchi Depth in Coastal Water, Masan Bay in Korea (마산만의 투명도 변동)

  • 염말구;정연수
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.44-49
    • /
    • 2003
  • Masan Bay is one of the most heavily polluted bay in Korea owing to the large industrial complex and urban area. Water transparency, Secchi depth in meter, was observed 33 times totally at four sites during 1995 through 2002 and analysed statistically. The range was 0.2∼7.2m, mean 204m, and variation coefficient 60% in totally. Roughly speaking, monthly mean showed lower value April or July than other months. Seasonal mean showed lower in spring or summer than other seasons. Yearly mean was lowest in '95 and '98 during 7 years. Each sampling site showed a different patterns by the monthly, seasonal or yearly transparencies. Inner bay area, S1 site, showed lowest transparency and highest variation coefficient owing to the streamlets and urban area. And it was supposed that one of the important factor affecting different transparency distribution of most seaward site, S4 site, among four sites in the Masan Bay may be the underwater effluents of urban sewage water treated.

Reference Values and Water quality Assessment Based on the Regional Environmental Characteristics (해역의 환경특성을 고려한 해양환경 기준설정과 수질등급 평가)

  • Rho, Tae-Keun;Lee, Tong-Sup;Lee, Sang-Ryong;Choi, Man-Sik;Park, Chul;Lee, Jong-Hyun;Lee, Jae-Young;Kim, Seung-Su
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.2
    • /
    • pp.45-58
    • /
    • 2012
  • For the development of reference values and evaluation of water quality in various environmental conditions, we divided the coastal region around Korean peninsular into 5 distinctive ecological regions based on the influence of surface current, depth, tidal range, turbidity, and climate condition. We used national marine environment monitoring data collected by National Fisheries Research & Development Institute(NFRDI) from 2000-2009. For the reference values, we used maximum seasonal mean from 2000 to 2007 for DIN, DIP, and chlorophyll-a and minimum seasonal mean for secchi depth measured at stations without the influence of river runoff in each ecological regions. For the reference value of bottom dissolved oxygen saturation, we used minimum mean value of 90% calculated from minimal riverine influence stations of whole regions. We calculated enrichment score for each assessment criteria. The enrichment score of DIN, DIP, and Chlorophyll-a was 1 (=< reference value), 2 (< 110% of reference value), 3 (< 125% of reference value), 4 (< 150% of reference value), and 5 (> 150% of reference value). The enrichment score of DO saturation and Secchi depth was 1 (> reference value), 2 (> 90% of reference value), 3 (>75 % of reference value), 4 (> 50% of reference value), and 5 (< 50% of reference value). We calculated water quality index using weighted linear combination of five enrichment score for the comparison of whole regions. From the water quality index distribution calculated from all stations between 2000 and 2007 period, we classified into 5 grade based on the standard deviation calculated from total water quality index. We assigned grade very good(I), good(II), moderate(III), bad(IV), and very bad(V) when the water quality index was less than 23, minimum + 1 sd, +2 sd, +3 sd, and grater than minium+ 3 sd, respectively.

The Validation of Band Ratio Algorithm for Estimation of Transparency of Coastal Area (연안해역의 투명도 추정을 위한 밴드비율 알고리듬 검증)

  • Jeong, Jong-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2001
  • SDD(Secchi disk depth) algorithm were composed of SeaWiFS bands combination using in-water optical data sets obtained Lake Sihwa, Kyungki Bay, Chunsu Bay, and Chinhae Bay. SDD algorithm were compared with in-situ data. Reflectance band ratio, $R_{rs}$(490/665) had the highest correlation($R^2$=0.8188) with in-situ data. For in-water algorithm applied to satellite data, reflectance band ratios of Landsat TM data were calculated. However, the results of applied Landsat TM had the low correlation, these reason were discussed in this paper.

  • PDF

Suggestion for Trophic State Classification of Korean Lakes (우리나라 호소의 영양상태 분류에 관한 제언)

  • Kong, Dongsoo;Kim, Bomchul
    • Journal of Korean Society on Water Environment
    • /
    • v.35 no.3
    • /
    • pp.248-256
    • /
    • 2019
  • Most of the lakes in Korea are artificial, and their limnological characteristics are significantly different from those of natural lakes in other countries. In this study, the relationship between trophic state parameters was investigated, based on summer average data of the upper layer, in 81 lakes in Korea, 2013-2017. Compared with trends of foreign natural lakes, chlorophyll a (Chl.a) concentration was slightly lower at the same total phosphorus (TP) concentration, and transparency (Secchi depth, SD) was noticeably lower at the same Chl.a concentration. This is because of excessive allochthonous loading of non-algal material during the monsoon period, and the reduction in phosphorus availability to algal growth, by light limitation and short hydraulic residence time. Considering these characteristics, we suggested site-specific thresholds of trophic state classification for Chl.a, TP and SD, based on annual average data at the upper layer of lakes ($3-10{\mu}g\;L^{-1}$ of Chl.a measured by UNESCO method; $13-33{\mu}g\;L^{-1}$ of TP; 1.6-3.2 m of SD for mesotrophic state class, respectively). The threshold value of TP for each trophic state class, corresponded to the upper value of previously reported range, and that of SD was out of the range. We suggested applying only TP and Chl.a in assessment of trophic state of lakes in Korea, excluding SD.

Optical Properties of Sea Water ( IV ) - Coastal Waters of Southern Part of Korea - (해수의 광학적 성질에 관한 연구 ( IV ) - 한국남해안 -)

  • 양용림
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.14 no.1
    • /
    • pp.37-41
    • /
    • 1978
  • Optical properties were studied in the costal waters of the southern part of Korea based on twenty oceanographic stations from 1 st to 9 th February, 1977. Submarine daylight intensity was measured by using an underwater luxmeter (Toshiba No.9). Daylight intensity in the upper 30m depth layer was measured at 1 m depth interval. The absorption coefficient of the sea water in the area ranged from 0.101 to 2.539 (mean 0.578). The Secchi-disc depth in the area ranged from 0.8 to 13 meters (mean 5.33 meters). The relationship between absorption coefficient (K) and transparency (D) was k= 1. 704/ D. The mean water color in the area was 5. 75 (3-9) in Forel scales. The rates of light penetration for daylight at 1m layer in the area ranged from 13.18 to 82. 05% and the mean was 59.56%, while the rate at 5m layer ranged from 0.007 to 46.1% and the mean was 18.47%.

  • PDF

Influence of Seasonal Monsoon on Trophic State Index (TSI), Empirical Water Quality Model, and Fish Trophic Structures in Dam and Agricultural Reservoirs (계절적 몬순에 의한 댐 인공호 및 농업용 저수지에서의 영양상태지수(TSI), 경험적 수질 모델 및 어류 트로픽 구조)

  • Yun, Young-Jin;Han, Jeong-Ho;An, Kwang-Guk
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1321-1332
    • /
    • 2014
  • The key objective of this study was to evaluate trophic state and empirical water quality models along with analysis of fish trophic guilds in relation to water chemistry (N, P). Trophic state index (TSI), based on total phosphorus (TP) and chlorophyll-a (CHL), ranged between oligotrophic and hypereutrophic state, by the criteria of Nurnberg(1996), and was lower than the trophic state of total nitrogen (TN). Trophic relations of Secchi depth (SD), TN, TP, and CHL were compared using an empirical models of premonsoon (Pr), monsoon (Mo), and postmonsoon (Po). The model analysis indicated that the variation in water transparency of Secchi depth (SD) was largely accounted (p < 0.001, range of $R^2$ : 0.76-0.80) by TP during the seasons of Mo and Po and that the variation of CHL was accounted (p < 0.001, $R^2=0.70$) up to 70% by TP during the Po season. The eutrophication tendency, based on the $TSI_{TP}$ vs. $TSI_{N:P}$ were predictable ($R^2$ ranged 0.85-0.90, p < 0.001), slope and y intercept indicated low seasonal variability. In the mean time, $TSI_{N:P}$ vs. $TSI_{CHL}$ had a monsoon seasonality in relation to values of $TSI_{N:P}$ during the monsoon season due to a dilution of reservoir waters by strong monsoon rainfall. Trophic compositions of reservoir fish reflected ambient contents of TN, TP, and CHL in the reservoir waters. Thus, the proportions of omnivore fish increased with greater trophic conditions of TP, TN and CHL and the proportions of insectivore fish decreased with greater trophic conditions.

A Study on the Application of Green LiDAR Using Automatic River Water Quality Data (하천 수질자동측정 자료를 활용한 Green LiDAR 적용성 검토)

  • Kim, Chang Sung;Kim, Tae-Jeong;Kim, Ji Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.232-232
    • /
    • 2020
  • 하천기본계획 수립이나 생태하천 조성사업 등 다양한 하천사업에서 하천측량은 대상 하천의 지형 현황과 과거 사업이후의 변화량을 확인할 수 있는 중요한 요소이다. 국내 측량 기준인 공공측량작업규정(국토지리정보원)에서 하천 측량은 육지부에서는 횡단측량을 수부에서는 수심측량을 실시하고 수심측량은 음향측심기 사용을 원칙으로 한다. 국내 대부분의 수심측량은 단빔 음향측심기를 사용하고 있는 실정이며 일부 수심 확보 구간 또는 연구목적으로 멀티빔 음향측심기를 적용한 사례가 일부 보고된 바가 있다. 최근 수심측정이 가능한 항공수심측량(Airbone LiDAR Bathymetry) 장비 중 핵심계측기기인 Green LiDAR 센서 국산화 및 경량화에 관한 연구가 진행중이다. 이에 본 연구는 국내 하천 여건에서 개발 센서가 어느 정도의 활용성을 확보할 수 있는지를 검토하였다. 우선 환경부가 운영중인 수질자동측정망 71개 지점의 정기측정성과 중 탁도에 관한 일자료를 확보가 가능한 45개 지점을 대상으로 G-LiDAR 센서의 SD(Secchi Depth)를 기준으로 가용계측일을 산정해 보았다. 분석기간은 '12. 7.부터 '19.12.까지이며 분석기간중 SD 1.5m(1.94 NTU 추정) 기준을 만족하는 기간은 한강 2.07년, 낙동강 0.64년, 금강 2.21년, 영산강 2.71년으로 나타났다. 또한 지점별 가용기간 분석결과 분석기간인 7.33년 동안 탁도 기준이하인 운영 가능 기간은 연중 평균 80여일(2.74개월)로 나타나 제한적이나마 활용이 가능할 것으로 확인되었다. 향후 현장조사를 통해 공공측량 성과와 대상수계의 탁도 실측자료와의 연계분석을 통해 정확한 활용성 검토를 수행할 예정이다. 향후 적용 센서의 개발 성능목표를 달성한다면 하천내의 다양한 분야에서 활용이 가능할 것으로 기대된다.

  • PDF