• Title/Summary/Keyword: Seawater chlorination

Search Result 7, Processing Time 0.02 seconds

Modeling of Chlorine Disinfectant Decay in Seawater (해수에서의 소독제 거동 예측 모델에 관한 연구)

  • Han, Jihee;Sohn, Jinsik
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.9-17
    • /
    • 2016
  • Disinfectant/oxidation process is a crucial process in water treatment for supplying safe drinking water. Chlorination is still widely used for water treatment area due to its effectiveness on microbial inactivation and economic feasibility. Recently, disinfection concern in marine environment is increasing, for example, movement of hazardous marine organism due to ballast water, marine environmental degradation due to power plant cooling water discharge, and increase of the amount of disinfectant in the offshore plant. It is needed to conduct the assessment of disinfectant behavior and the development of disinfectant prediction model in seawater. The appropriate prediction model for disinfectant behavior is not yet provided. The objective of the study is to develop chlorine decay model in seawater. Various model types were applied to develop the seawater chlorine decay model, such as first order decay model, EPA model, and two-phase model. The model simulation indicated that chlorine decay in seawater is influenced by both organic and inorganic matter in seawater. While inorganic matter has a negative correlation with the chlorine decay, organic matter has a positive correlation with the chlorine decay.

A Study on the Corrosion of Cu-Ni Alloy in Chlorinated Seawater for Marine Applications (잔류 염소가 포함된 해수에서의 Cu-Ni 합금의 부식 거동 연구)

  • Jung, Geunsu;Yoon, Byoung Young;Lim, Chae Seon
    • Corrosion Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.176-182
    • /
    • 2018
  • Corrosion of the Cu alloy with 10wt% Ni in stagnant seawater with residual free chlorine was investigated. Despite that fact that Cu alloys are widely used for seawater applications due to their stubborn resistance to chloride attack, not much is known as to how the residual free chlorine in seawater affects corrosion of Cu and its alloys. In this work, immersion tests were conducted in the presence of different levels of chlorine for 90-10 Cu-Ni samples, one of the most frequently used Cu alloys for seawater application, mostly in shipbuilding. The results revealed no evidence for accelerated corrosion of the Cu-Ni alloy even in the presence of 5 ppm residual chlorine in seawater, signifying that the Cu-Ni alloy can be more tolerant to residual chlorine that has been commonly cited by the shipbuilding industry. However, comparison of polarization behavior of the alloy samples in the presence of different electrolytes with different concentrations of residual chlorine suggests that higher concentration of chlorine could increase the corrosion rate of the Cu-Ni alloy. Furthermore, it is suggested that microorganisms in the seawater could increase the corrosion rate of the Cu-Ni alloy by encouraging exfoliation of the corrosion product off the metal surface.

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.

Survival and Physiological Response of Olive Flounder, Paralichthys olivaceus Exposed to Seawater Chlorinated by Chlorine Dioxide ($CIO_2$) (이산화염소($CIO_2$) 처리해수에 노출된 넙치, Paralichthys olivaceus의 생존과 생리적 반응)

  • 김흥윤;김진도
    • Journal of Aquaculture
    • /
    • v.16 no.3
    • /
    • pp.151-158
    • /
    • 2003
  • This study was conducted to estimate the effects of residual chlorine dioxide ($CIO_2$) in chlorinated seawater on survival and physiological responses (hematocrit: Ht, hemoglobin: Hb, serum electrolyte and glucose levels, and osmolality) of olive flounder, Paralichthys olivaceus. All the flounders were exposed for 10 min to different concentrations of residual $CIO_2$ just after chlorination for 1 min in each experimental aquarium (EA). ClO$_2$-free seawater was continuously supplied to each EA after 10 min exposure to $CIO_2$. By means of probit analysis, the median lethal times (LT$_{50}$, min) of flounder exposed to 0.43 and 0.51 ppm $CIO_2$, were at 103 and 32 min, respectively. In the range from 0.34 to 0.51 ppm $CIO_2$, the values of Ht, Hb, electrolytes and osmolality of fish exposed to $CIO_2$ were significantly elevated as elapsed time and residual concentrations of $CIO_2$ increased after chlorination. The levels of Ht, Hb, electrolytes and osmolality in flounder exposed to 0.27 ppm $CIO_2$ were not significantly different compared to control fish, which were maintained in $CIO_2$-free seawater; however, the levels of serum glucose were significantly increased with elapse times.

The Application of RO Membrane System in Municipal Wastewater Reclamation (RO Membrane System을 이용한 도시하수처리)

  • 이규현;안준수;유제강
    • Membrane Journal
    • /
    • v.1 no.1
    • /
    • pp.78-95
    • /
    • 1991
  • Water factory 21(WF 2) in Orange County California, is a advanced wastewater treatment(AWT) plant designed to reclaim biologically treated munidpal wastewater for injection into a seawater barrier system. Processes included are lime treatment air stripping, filtration, activated carbon adsorption, reverse osmosis(RO), and chlorination. The effectiveness of each treatment process is presented including pretreatment, RO dimineralization. The data collected show that the processes, including RO, used at WF-21 are capable of producing a very high quality water on a reliable basis. Treatment reduced all contaminants, to levels below national primary drinldng water regulation maximum contaminant levels. It was found that lime clarified secondary effluent can be used as feedwater to a RO dimineralizer. Experiments with new low pressure membrane(250psi) show great potential for reducing RO cost.

  • PDF

Serial Changes in the Rate of Respiratory Metabolism of Olive Flounder, Paralichthys olivaceus Exposed to Intermittent Chlorination of Chlorine Dioxide ($CIO_2$) (이산화염소 (CIO2)의 간헐적 처리에 따른 넙치, Paralichthys olivaceus 호흡대사율의 경시적 변화)

  • Kim, Heung-Yun
    • Journal of fish pathology
    • /
    • v.16 no.2
    • /
    • pp.91-102
    • /
    • 2003
  • The present study was investigated the effects of chlorine dioxide ($CIO_2$) on the rcspimtory metabolism of olive flounder (Parolichlhys olivaceus) imtermittently exposed to seawater chlorinated by $CIO_2$:. Oxygen consumption of flounder before and after once or twice $CIO_2$-treatment with 12 hr- or/and 24 hr-interval were serially measured with automatic intenniteent-flow respirometer system (AIRS). The oxygen consumption rates of flowKier exposed to 0.10 and 0.20 ppm$CIO_2$, were not different from the control fish prior to the once or twice chlorinations . On the other hand, the respiratory metabolic rates of flounder exposed to 0.30 ppm$CIO_2$ were significantly increased 15% and 22 - 23% after the once and twice chlorinations compared to the control fish. respectively. The flounder exposed In 0.40 and 0.50 ppm$CIO_2$: died within 4 hr and I hr. respectively. The elevation( respiratory metabolism in flounder exposed toO.30 ppm$CIO_2$ and above is considered due to physiological stress caused by $CIO_2$ exposure.

The Electrochemical Chlorination for Marine Plankton Community Disinfection (해양 플랑크톤 군집의 전기분해 염소소독 효과)

  • Kang, Jung-Hoon;Shin, Kyoung-Soon;Hyun, Bong-Gil;Jang, Min-Chul;Kim, Eun-Chan;Chang, Man
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.3
    • /
    • pp.127-137
    • /
    • 2007
  • To confirm whether or not the Electrochemical Disinfection System (EDS) meet with the D-2 regulation established by IMO (International Maritime Organization), the biological treatment efficacy of the EDS was assessed using three groups of natural marine plankton (bacteria, $10-50\;{\mu}m$ and $>50\;{\mu}m$ sized organisms). Influent water was passed through the EDS under the flow velocity ($23.8\;m^3/hr$) and test design was consisted of control (no treatment) and experimental (10 ppm and 30 ppm) condition for total residual chlorine (TRC). And the biological condition of the influent water followed the standards established by the guidelines for the approval of ballast water management systems. The disinfection efficacy of the $10-50\;{\mu}m$ sized organisms (phytoplankton) was assessed by three kinds of measurements using photomicroscope, epifluorescence microscope and fluorometer (fumer Designs 10-AU). After being passed through the EDS, all motile phytoplankton lost their motility under photomicroscope, the colour of chlorophyll fluorescence fumed from red into green under epifluorescence, and the high chlorophyll fluorescence (Expt. 1: 6.95, Expt. 2: 7.11) detected by fluorometer decreased into value not detected. These results indicated phytoplankton community was totally killed after electrochemical disinfection treatment. Survivorship of the larger organisms than $50\;{\mu}m$ was determined based on the appendage's movement under a stereomicroscope. Natural assemblage collected from ambient seawater was killed shortly after being passed through the EDS, whereas some Artemia remained alive. However, no live Artemia was found after 24 hour further exposure to each TRC concentration (10 and 30 ppm) under darkness. After electrochemical treatment, the target bacteria such as aerobes, coliform and Escherichia coli were completely killed on the basis of CFU (colony forming unit) on Petrifilm plate ($3\;M^{TM}$) after 48 hr incubation. Moreover, no regrowth was found in the three groups of plankton during five days under additional exposure to the treated water. These results indicated that the disinfection efficiency of the EDS on the three groups of plankton satisfy D-2 regulation.

  • PDF