• Title/Summary/Keyword: Seating velocity

Search Result 6, Processing Time 0.022 seconds

Study of Valve Train Motion According to Valve Clearance (밸브 간극에 따른 밸브트레인 거동 연구)

  • Min, Sunki
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.193-199
    • /
    • 2017
  • Mechanical tappet is used to reduce the cost and friction loss compared with hydraulic tappet. But the mechanical tappet doesn't have the ability to control the clearance between cams and valves and is selected by measuring the distance between valves and cams in order to minimize the clearance of valves by considering thermal expansion of valves. So, the valve clearance is nearly zero after fully warming-up periods, but there is valve clearance before warming-up. Especially at cold condition, the clearance is relatively large and can bring about some problems. In this study, the valve motions like lift, velocity, seating velocity and bouncing height were studied at various valve clearance conditions by experiment and analysis. As the valve clearance increases, the ramp area becomes shorten and it causes the valve train motion to have bad effects.

The Analysis and Experiments for the Design of Electro-mechanical Variable Valve Train System (VVT용 전자식 흡/배기 밸브 시스템 설계를 위한 해석 및 실험)

  • 박승현;오성진;이종화;박경석;김도중
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.60-67
    • /
    • 2001
  • As a method of variable valve train(VVT), Electro-Mechanical Valve(EMV) has been studied. Compared with conventional VVT system, the EMV system has a relatively simple structure. The system has two electromagnets, springs and an armature. The system can be operated by reciprocal action between armature and two electromagnets. And, the operating event can be controlled by electrical signal from controller. Therefore, reduction of emission and fuel consumption can be achieved through valve event control at each engine operating condition. In this study, characteristics of EMV system were investigated by simulations and experiments. The results of simulation and experiment show that the core shape and material characteristics are dominant parameters on magnetic force and delay time. In order to apply the system to commercial engine, it has a compact size and high stiffness springs(50N/mm) to increase the valve speed. Because of high valve seating velocity, loud noise and high impact force generated, which can lead to reduction of actuator durability. Therefore, further research is required to reduce valve seating velocity.

  • PDF

A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques (컴퓨터 시뮬레이션 기법을 이용한 고속전철 승객안전도 해석 및 평가)

  • 윤영한;구정서;이재완
    • Journal of the Korean Society for Railway
    • /
    • v.6 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • The computer simulation techniques were adopted to evaluate the effects of seating positions of passenger under various accident scenarios. The baseline of computer simulation model was tuned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, The KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques (컴퓨터 시뮬레이션기법을 이용한 고속전철 승객안전도 해석 및 평가)

  • 윤영한;구정서;이재완
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.60-65
    • /
    • 2002
  • The computer simulation techniques were adopted to evaluate effects of seating positions of passenger under the various accident scenarios. The baseline of computer simulation model was tunned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

  • PDF

Respiration Rate and Oxygen Intake by Change of Wheelchair Backrest Angle

  • Chae, Soo-Young;Kwon, Hyuk-Cheol;Jeong, Dong-Hoon;Kong, Jin-Yong;Koo, Hyun-Mo
    • Physical Therapy Korea
    • /
    • v.12 no.4
    • /
    • pp.26-32
    • /
    • 2005
  • This study was purposed to provide basic information on the correct application of a wheelchair's backrest angle by investigating the change in cardiopulmonary function according to backrest angle during propulsion. This study examined the effects of the wheelchair's backrest angle on the cardiopulmonary function by varying the angle to $0^{\circ}$, $10^{\circ}$ and $20^{\circ}$ with a propulsion velocity of 60 m/min. The experimental parameters were respiration rate, oxygen consumption rate and oxygen consumption rate/kg which were measured by a portable wireless oxygen consumption meter (COSMED, $K4b^2$). The results of the study were as follows: 1) There were no statistically significant differences in respiration rates due to changes in the wheelchair backrest angle (p>.05). 2) There were statistically significant differences in oxygen consumption rates due to changes in the wheelchair backrest angle (p<.05). 3) There were also statistically significant differences in the oxygen consumption rate/kg due to changes in the wheelchair backrest angle (p<.05). In conclusion, changes in the backrest angle of wheelchairs during propulsion influences oxygen consumption rates and heart rates, while respiration rates are not affected. Therefore, a training program for good seating and posture needs to be provided, and the wheelchair seating system should be equipped with the unadjustable-angle wheelchair to reduce the functional load on the cardiopulmonary system.

  • PDF

The Effect of External-rotation Reducing Exercise on the Gait of Patient with Hemiplegia (편마비 환자의 보행에 대한 외회전 감소운동의 효과)

  • Kim, Ah-Ram;Park, Cheol-Ju;Ryu, In-Jeong;Choi, Jeong-Wook;Hyun, Ju-Hyup;Cho, Nam-Jung;Yoo, Byung-Kook;Jeong, Jong-Hee;Lee, Ho-Jun
    • Journal of the Korean Academy of Clinical Electrophysiology
    • /
    • v.6 no.1
    • /
    • pp.69-79
    • /
    • 2008
  • In this paper, the effects of the external-rotation exercise on the gait of hemiplegia was investigated. 26 patients with hemiplegia due to cerebrovascular accident participated in this study. Subjects were randomly assigned to experimental group(n=12) and control one(n=14). 12 subjects of the experimental group were received the external rotation reducing exercise on the mat with seating and supine posture after the general therapeutic exercise for hemiplegia. 14 subjects of the control group were received only general therapeutic exercise. The effects of external rotation reducing exercise were evaluated by measurements of gait velocity, cadence, stride length, step length and foot angle using ink-foot prints. The collected data were analyzed statistically based on Wilcoxon, Mann-Whitney and correlation analysis. After treatment of three weeks, it turned out that external rotation reducing exercise has the significant effect on foot angle(p<0.01). However the exercise has no statistically significant direct effect on the gait velocity, cadence, stride length and step length.

  • PDF