• Title/Summary/Keyword: Seat Rail

Search Result 31, Processing Time 0.022 seconds

Process Design of Seat Rail in Automobile by the Advanced High Strength Steel of DP780 (DP780 초고장력 강판을 이용한 자동차용 시트레일의 성형공정 설계)

  • Ko, D.C.;An, J.H.;Jang, M.J.;Bae, J.H.;Kim, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.197-202
    • /
    • 2008
  • The control of springback is very important in sheet metal forming since springback affects the dimensional inaccuracy of product. The object of this study is to design the manufacturing process for the improvement of the performance of seat rail by DP780. The influence of process variables such as bend angle and pad force on the springback has been firstly investigated through the comparison between the results of FE-analysis and trial out for initial design based on designer's experience. The process variables of the initial design have been modified in order to improve the dimensional accuracy of seat rail from the prediction of springback by FE-analysis. It was shown from experiment that the improved design satisfied the required specifications such as the dimensional accuracy and the strength of seat rail.

Development of Automotive Seat Rail Parts for Improving Shape Fixability of Ultra High Strength Steel of 980MPa (980MPa 초고장력 강판의 형상 동결성 향상을 통한 자동차 시트레일 부품 개발)

  • Park, Dong-Hwan;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.5
    • /
    • pp.137-144
    • /
    • 2016
  • This paper aims to ensure describe the a spring-back prevention technique for improving shape fixability by using an ultra-high strength steel sheet with 980 MPa to develop a lightweight seat rail parts. Ultra-high strength steel gives a potential for considerable weight reduction and a cost-effective way to produce energy efficient vehicles. The influence of a spring-back of seat rail parts on the shape fixability in forming processes was investigated to be solved by an adjustment of the appropriate tool design and process parameters. The computed results for improving shape fixability were in good agreement with the experimental results.

A Study on T-Joint Welding by High Power Fiber Laser of SAPH Steel Plate for Automobile (자동차용 강판 SAPH의 고출력 파이버 레이저에 의한 T형상 용접특성에 관한 연구)

  • Oh, Yong-Seok;Yoo, Young-Tae;Shin, Ho-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.3
    • /
    • pp.35-44
    • /
    • 2009
  • The purpose of this paper is to describe experimental results about the T-joint welding of the high power continuous wave (CW) fiber laser for SAPH steel plate for seat frame of car. The seat rail is a part of seat frame of cars. The assembling method is mostly fix up using a bolt and nut. But this assembling method has many demerits in productivity such as increasing work process and material cost. This paper presents an experimental study about Laser T-Joint weldability of seat rail. Laser welding has many advantages in lightness and saving material costs of seat frame. The laser beam was moved along the work pieces by six axis robot with process optical fiber. The laser beam is focused with a welding head within incident angle $15{\sim}45^{\circ}$ for the purpose of the T-joint welding through two side full penetration. The range of the root gap size is less than ${\leq}0.4mm$. Optical microscopy SEM were performed to observe the micro structures and determine the structures of welded zone.

Process Design of Automobile Seat Rail Lower Parts using Ultra-High Strength, DP980 Steel (980MPa급 초고장력 강판을 이용한 자동차용 시트 레일 로어 부품의 성형공정 설계)

  • Park, Dong-Hwan;Tak, Yun-Hak;Kwon, Hyuk-Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.160-167
    • /
    • 2018
  • The purpose of this study is to develop a process for forming a MPa ultra-high strength steel sheet to reduce weight and improve product strength. To do this, we performed the initial process design based on empirical formulas in a handbook and experience of skilled engineers, and researched the effects of major process variables on spring back by analyzing the forming analysis and experimental results. This paper suggests an optimal process design of the seat rail lower parts, using a MPa ultra-high strength steel sheet. This satisfies the dimensional accuracy and strength requirements for the product.

Experimental modal analysis of railway concrete sleepers with cracks

  • Real, J.I.;Sanchez, M.E.;Real, T.;Sanchez, F.J.;Zamorano, C.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.51-60
    • /
    • 2012
  • Concrete sleepers are essential components of the conventional railway. As support elements, sleepers are always subjective to a variety of time-dependent loads attributable to the train operations, either wheel or rail abnormalities. It has been observed that the sleepers may deteriorate due to these loads, inducing the formation of hairline cracks. There are two areas along the sleepers that are more prone to crack: the central and the rail seat sections. Several non-destructive methods have been developed to identify failures in structures. Health monitoring techniques are based on vibration responses measurements, which help engineers to identify the vibration-based damage or remotely monitor the sleeper health. In the present paper, the dynamic effects of the cracks in the vibration signatures of the railway pre-stressed concrete sleepers are investigated. The experimental modal analysis has been used to evaluate the modal bending changes in the vibration characteristics of the sleepers, differentiating between the central and the rail seat locations of the cracks. Modal parameters changes of the 'healthy' and cracked sleepers have been highlighted in terms of natural frequencies and modal damping. The paper concludes with a discussion of the most suitable failure indicator and it defines the vibration signatures of intact, central cracked and rail seat cracked sleepers.

The comfort evaluation and analysis of the urban rail vehicle (도시철도차량 시트의 안락성 평가 및 분석)

  • Goo, Jae-Kwang;Suh, Woo-Sung;Choi, Se-Hwa
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.222-228
    • /
    • 2007
  • In order to solve the problem of traffic holdups and environmental pollution(contamination), several metropolises are operating the subway and many local government plans hereafter the light rail vehicle operation and it is in the process of preparing. This point of time, it need to evaluate the comfortable characteristic of the seat which is closely connected with passenger and it should be reflected to the product design through the data analysis. The methods of the comfortable characteristic evaluation should be considered to various methods from physical factor to psychological factor. Among these, the most universal and possible quantitative measurement estimate through 'Body pressure measurement system'. From this paper, it was measured the body pressure of the subway seat which is in the process of operating in a domestic and it will be compared and analyzed the material & seat shape, so we evaluated the comfortable characteristic of the short-distance transportation railway vehicle. It was operated the man and woman who belongs in standard shape of Korean, we compared and analyzed the Peak position where the body pressure is visible and body pressure spread out.

  • PDF

Interior Noise Reduction Using Sensitivity Analysis and Structural Dynamic Modification (민감도 해석 및 구조 변경법을 이용한 차실 소음 저감)

  • 황우석
    • Journal of KSNVE
    • /
    • v.9 no.6
    • /
    • pp.1145-1151
    • /
    • 1999
  • Sensitivity analysis and structural modification technique are used to reduce the interior noise of a passenger car. The sensitivity analysis for the noise level at the rear seat shows that the stiffness change at the front lower member and the rear roof rail are sensitive. Using the structural modification method, we verified that the reinforcements at those members decrease the noise transfer function from the body to the rear seat. The combined application of the sensitivity analysis and structural modification method can decrease the noise level effectively.

  • PDF

The Friction and Wear Characteristics of the Seat Recliner Parts Based on Lubricant Characteristics (윤활제 특성에 따른 시트 리클라이너 부품의 마찰 및 마모 특성)

  • Hong, Seok-June;Lee, Kwang-Hee;Lim, Hyun-Woo;Kim, Jae-Woong;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.35 no.3
    • /
    • pp.183-189
    • /
    • 2019
  • The driver seat of an automobile is in direct contact with the driver and provides the driver with a safe and comfortable ride. The seat consists of a frame, a rail, and many recliners. In recent years, strength and operating force measurement testing of the recliner have become vital for designing car seats. However, performance evaluation requires expensive testing equipment, numerous seat products, and considerable time. Therefore, the trend is to reduce experimentation through interpretation. This study examines the lubrication of solid lubricant for automotive seat recliners and confirms the friction and wear performance. In this study, the lubrication behavior of solid lubricants for car seat recliners is investigated to ascertain the friction and wear performance and to provide accurate values for the strength analysis. The friction material consists of a pin and a plate made from steel, which is widely used in recliners. The friction and wear under lubrication conditions are measured by a reciprocating friction wear tester. The friction coefficient is obtained according to the load and speed. Based on the obtained results, it is possible to achieve a reduction in the error of the test value and the analysis by providing the friction coefficient and wear of the lubricant. The results can be applied to the analysis of automobile seat design.

A Study on the Structural Strength Evaluation for the Development of One-ton Grade Commercial Vehicle Seat Frame for the FMVSS 201 Model (1톤급 상용차 시트 개발에 따른 FMVSS 210 Model 구조 강도 평가 연구)

  • Cho, Kyu-Chun;Ha, Man-Ho;Moon, Hong-ju;Kim, Young-Gon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.2
    • /
    • pp.130-136
    • /
    • 2018
  • This study develops a seat with electric motor technology for a one-ton grade commercial vehicle. While applying electric motor technology, the FMVSS 210 seat frame strength test is also conducted to examine the product's weak parts. The seat frame strength test used the FMVSS 210 test standard and the ANSYS program was used to simulate the test and identify weak parts in the deformation and strain values. The test results showed that the cushion frame and slide rail connection bracket were fractured at loads of about 10,000 N. Similarly, the maximum stress and strain values in the bracket were obtained in the simulation results. On this basis, it was evaluated that the connection part bracket was a considerably weak part in the case of the first model, and changing the shape of the bracket and reinforcing the strength were required. In addition, the seat belt anchorage test results and simulation results were compared to assure their validity. In the comparison results, the error for each is about 5-10%. Therefore, the simulation performed in this study is considered to have produced reasonably accurate results.