• Title/Summary/Keyword: Seasonal performance

Search Result 364, Processing Time 0.024 seconds

Effect of temperature and moisture on curling of early age concrete slabs (재령 초기 콘크리트 슬래브의 컬링에 미치는 온도와 수분의 영향)

  • Sun, Ren-Juan;Nam, Young-Kug;Hong, Seung-Ho;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.1
    • /
    • pp.105-115
    • /
    • 2008
  • It is known that the long-term behavior and performance of jointed concrete pavement due to slab curling are affected by the environmental factors such as temperature, moisture, and so on. However, any relationships between the curling and its factors have not been defined clearly yet because of insufficient detailed investigation. The temperature, relative humidity, strain, vertical displacement of a concrete slab, and horizontal movement of its transverse joints were investigated by various sensors and devices instrumented in the slab of a concrete pavement section constructed for this study. The constraint of the curling by joint stiffness was investigated in addition to effect of the temperature and moisture on the early aged concrete slab by analyzing the field data measured for approximately 4days from concrete placement. The curling of the concrete slab showed 24hour cycles mainly because of the temperature effect, and the upward curling gradually increased because of the long-term effect of drying shrinkage of the concrete. The magnitude and variation of the curling were significantly affected by the joint stiffness which is comprised of aggregate interlocking and other factors. The effect of the variation of the seasonal joint stiffness varying with the temperature and long-term drying shrinkage on the slab curling will be investigated as a further study.

  • PDF

A Comparative Study of Male Gonadal Development between Wild and Cultured Yellow Catfish, Pseudobagrus fulvidraco (자연산과 양식산 동자개 Pseudobagrus fulvidraco 정소의 생식소발달 비교 연구)

  • Cho, Yun Jeong;Yoo, Soo Hyang;Park, Cheol Woo;Kim, Jong Wook;Kim, Jae Goo;Park, Jong Young
    • Korean Journal of Ichthyology
    • /
    • v.32 no.3
    • /
    • pp.130-135
    • /
    • 2020
  • Male gonadal development of the yellow catfish, Pseudobagrus fulvidraco, one of the most popular fish species in Korean aquaculture performance, was investigated by histological observation of monthly collected specimens to make comparisons between wild and cultured individuals. Their reproductive cycle was classified into the successive developmental stages as follows: a growing stage (April), a spawning stage (May), a degeneration stage (June to July), and a resting stage (August to October) in the wild and outdoor-cage individuals; a growing stage (April to June), a spawning stage (July to August), a degeneration stage (September), and a resting stage (October) in the indoor-cage ones. Values of gonadosomatic index (GSI) of wild and outdoor cages peaked in May, followed by a sudden decline in August~September and June~August, respectively. In contrast, GSI values of the indoor-cage individuals peaked in September and were followed by a sudden drop. Remarkable seasonal variation in condition factor (CF) was undetectable, peaking in June in the wild-cage individuals and November in the wild ones. Overall, our results suggest that it is suitable to use the male of the outdoor-cage individuals for artificial fertilization and that it is efficient to perform artificial fertilization in May, such as reproductive cycle of wild.

An Experimental Study on the Effectiveness of Soil Compaction at Below-Freezing Temperatures (동결 온도에서 다짐효과에 관한 실험적 연구)

  • Hwang, BumSik;Chae, Deokho;Kim, Youngseok;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Korea has four distinct seasons, showing hot and humidity in summer and cold weather lasted in winter. Domestic research on earth work has been developed according to the seasonal characteristics, and most of research topics have focused on the effect of freezing-thawing on the performance of geo-materials. However, the previous research was performed on the ground compacted at room temperature and therefore, the effect of the sub-zero temperature at the time of construction was not fully investigated. The ground characteristics compacted at freezing temperature can be different from those at room temperature and show different characteristics of strength and deformation caused by freezing and thawing. Therefore, the compaction tests on sandy materials were conducted under various temperature at $-3^{\circ}C$ and $-8^{\circ}C$ with various fine contents of 0%, 5%, 10% and 15% in weight fraction. The effectiveness of soil compaction at below-freezing temperatures were compared with the compaction at room temperature at $18^{\circ}C$ in terms of the maximum dry unit weight and optimum water contents. Based on the test results, the maximum dry unit weight tends to decrease with the freezing temperature and the relative compaction at $-8^{\circ}C$ can not be satisfied with general specification standard.

A Feasibility Study on the Application of TVDI on Accessing Wildfire Danger in the Korean Peninsula (한반도 지역 산불 발생 위험도 예측에 TVDI 적용 가능성 고찰)

  • Kim, Kwang Nyun;Kim, Seung Hee;Won, Myoung Soo;Jang, Keun Chang;Choi, Won Jun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_3
    • /
    • pp.1197-1208
    • /
    • 2019
  • Wildfire is a major natural disaster affecting socioeconomics and ecology. Remote sensing data have been widely used to estimate the wildfire danger with an advantage of higher spatial resolution. Among the several wildfire related indices using remote sensing data, Temperature Vegetation Dryness Index (TVDI) assesses wildfire danger based on both Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST). Although TVDI has physical advantages by considering both weather and vegetation condition, previous studies have shown TVDI does not performed well compare to other wildfire related indices over the Korean Peninsula. In this study we have attempted multiple modification to improve TVDI performance over the study region. In-situ measured air temperature was employed to increase accuracy, regression line was generated using monthly data to include seasonal effect, and TVDI was calculated at each province level to consider vegetation type and local climate. The modified TVDI calculation method was evaluated in wildfire cases and showed significant improvement in wildfire danger estimation.

Retrieval of Land Surface Temperature Using Landsat 8 Images with Deep Neural Networks (Landsat 8 영상을 이용한 심층신경망 기반의 지표면온도 산출)

  • Kim, Seoyeon;Lee, Soo-Jin;Lee, Yang-Won
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.487-501
    • /
    • 2020
  • As a viable option for retrieval of LST (Land Surface Temperature), this paper presents a DNN (Deep Neural Network) based approach using 148 Landsat 8 images for South Korea. Because the brightness temperature and emissivity for the band 10 (approx. 11-㎛ wavelength) of Landsat 8 are derived by combining physics-based equations and empirical coefficients, they include uncertainties according to regional conditions such as meteorology, climate, topography, and vegetation. To overcome this, we used several land surface variables such as NDVI (Normalized Difference Vegetation Index), land cover types, topographic factors (elevation, slope, aspect, and ruggedness) as well as the T0 calculated from the brightness temperature and emissivity. We optimized four seasonal DNN models using the input variables and in-situ observations from ASOS (Automated Synoptic Observing System) to retrieve the LST, which is an advanced approach when compared with the existing method of the bias correction using a linear equation. The validation statistics from the 1,728 matchups during 2013-2019 showed a good performance of the CC=0.910~0.917 and RMSE=3.245~3.365℃, especially for spring and fall. Also, our DNN models produced a stable LST for all types of land cover. A future work using big data from Landsat 5/7/8 with additional land surface variables will be necessary for a more reliable retrieval of LST for high-resolution satellite images.

Performance Analysis of the $TiO_2$ Dye-Sensitized Solar Cell according to Seasonal Changes (계절적 변화에 따른 $TiO_2$ 염료감응형 태양전지의 발전 성능 분석)

  • Moon, Byeong Eun;Choi, Eun Gyu;Kim, Jong Goo;Ryou, Young Sun;Yoon, Yong Cheol;Kim, Hyeon Tae
    • Journal of Bio-Environment Control
    • /
    • v.23 no.3
    • /
    • pp.221-228
    • /
    • 2014
  • In this study, we evaluated the efficiency of the dye-sensitized solar cell, through an analysis of the amount of energy and solar radiation according to the season. Solar array was installed next to a greenhouse in Gyeongsang National University (Latitude : N $35^{\circ}$ 9' 9.20", Longitude : E $128^{\circ}$ 5' 44.90", Altitude : 52 m), over a period of four months between August 2012 and February 2013, and solar radiation and generated electrical energy was measured and compared. The values was the greatest in October, showing that the vertical solar radiation on panel area was about 1,013.03MJ and the amount of generated power was about 4.87 kWh. The lowest values were obtained in November, showing that the vertical solar radiation on the panel area was about 755.25MJ and the amount of generated power was about 3.34 kWh. The average efficiency values were 3.12% in August, 2.60% in October, 2.39% in November, and 2.23% in February, respectively. Results of the study would be used as basic data when applying dye-sensitized solar cells to greenhouses in the future.

Strength properties of composite clay balls containing additives from industry wastes as new filter media in water treatment

  • Rajapakse, J.P.;Gallage, C.;Dareeju, B.;Madabhushi, G.;Fenner, R.
    • Geomechanics and Engineering
    • /
    • v.8 no.6
    • /
    • pp.859-872
    • /
    • 2015
  • Pebble matrix filtration (PMF) is a water treatment technology that can remove suspended solids in highly turbid surface water during heavy storms. PMF typically uses sand and natural pebbles as filter media. Hand-made clay pebbles (balls) can be used as alternatives to natural pebbles in PMF treatment plants, where natural pebbles are not readily available. Since the high turbidity is a seasonal problem that occurs during heavy rains, the use of newly developed composite clay balls instead of pure clay balls have the advantage of removing other pollutants such as natural organic matter (NOM) during other times. Only the strength properties of composite clay balls are described here as the pollutant removal is beyond the scope of this paper. These new composite clay balls must be able to withstand dead and live loads under dry and saturated conditions in a filter assembly. Absence of a standard ball preparation process and expected strength properties of composite clay balls were the main reasons behind the present study. Five different raw materials from industry wastes: Red Mud (RM), Water Treatment Alum Sludge (S), Shredded Paper (SP), Saw Dust (SD), and Sugar Mulch (SM) were added to common clay brick mix (BM) in different proportions. In an effort to minimize costs, in this study clay balls were fired to $1100^{\circ}C$ at a local brick factory together with their bricks. A comprehensive experimental program was performed to evaluate crushing strength of composite hand-made clay balls, using uniaxial compression test to establish the best material combination on the basis of strength properties for designing sustainable filter media for water treatment plants. Performance at both construction and operating stages were considered by analyzing both strength properties under fully dry conditions and strength degradation after saturation in a water bath. The BM-75% as the main component produced optimum combination in terms of workability and strength. With the material combination of BM-75% and additives-25%, the use of Red Mud and water treatment sludge as additives produced the highest and lowest strength of composite clay balls, with a failure load of 5.4 kN and 1.4 kN respectively. However, this lower value of 1.4 kN is much higher than the effective load on each clay ball of 0.04 kN in a typical filter assembly (safety factor of 35), therefore, can still be used as a suitable filter material for enhanced pollutant removal.

Seasonal Production Performance of Angora Rabbits under Sub-temperate Himalayan Conditions

  • Bhatt, R.S.;Sharma, S.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.416-420
    • /
    • 2009
  • An experiment of one-year duration was conducted on sixteen adult male German Angora rabbits under sub-temperate Himalayan conditions, to assess the effect of seasons on their body weight, wool production and quality, plane of nutrition and the digestibilities of nutrients. The daily meteorological attribute viz. minimum and maximum temperature; relative humidity and rainfall were recorded during winter (October to March), summer (April to June) and rainy (July to September) seasons. Biological parameters viz. body weight at the time of shearing, wool yield of individual rabbit, quality attributes of wool, fortnightly dry matter intake, chemical composition of feed and fodder and digestibilities of nutrients were recorded. Average minimum and maximum ambient temperature during winter, summer and rainy seasons were 4.6${\pm}$1.9 and 21.4${\pm}$2.8; 13.6${\pm}$2 and 30.3${\pm}$2; and 20.0${\pm}$1.4 and $31.0{\pm}1.8^{\circ}C$, respectively. The average relative humidity and total rainfall during winter, summer and rainy season were 69.5${\pm}$2.9% and 74.7${\pm}$21.8 mm; 58.6${\pm}$2.2% and 38.1${\pm}$18.1 mm; and 69${\pm}$4.2% and 104.0${\pm}$43.7 mm, respectively. The body weight of rabbits increased during all seasons, however, the maximum average daily weight gain of 3.47${\pm}$0.1 g was observed during the rainy season. The wool yield differed significantly (p$\leq$0.05) among different seasons with highest (140.4${\pm}$10 g) and lowest (108.5${\pm}$6.9 g) during winter and summer, respectively. The wool yield during the rainy season was 123.3${\pm}$5.2 g. The wool quality attributes revealed non-significant differences for staple length, fiber diameter, medulation percent, percent pure fibers and percent guard hairs. Plane of nutrition revealed significant (p$\leq$0.05) differences for concentrate intake. The concentrate intake was highest during winter (124.4${\pm}$2.6 g) followed by summer (86.8${\pm}$8.9 g) and rainy (80.7${\pm}$11.8 g) seasons. The reverse trend was observed in roughage intake with significantly (p${\leq}$0.05) lower intake during winter and highest during summer months. As a result total dry matter intake during different seasons was similar. Significant differences (p${\leq}$0.05) were observed for digestibilities of crude protein, crude fiber, ether extract, acid detergent fiber and cellulose. Digestibility of crude protein was highest during winter whereas the digestibilities of crude fiber, ether extract, acid detergent fiber and cellulose remained higher during the rainy season. During the winter season, the dry matter used for producing 100 g of wool was substantially lower than during other seasons and was concluded to be the best season for production of Angora wool under subtemperate Himalayan conditions.

Consequences of Post-grazing Residues Control and Birth Season on the Body Traits, Reproductive Performance and Offspring's Growth of Suckling Goats and Ewes Reared at Pasture in Guadeloupe (FWI)

  • Ortega-Jimenez, E.;Alexandre, G.;Arquet, R.;Coppry, O.;Mahieu, M.;Xande, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.8
    • /
    • pp.1108-1117
    • /
    • 2003
  • In Guadeloupe small ruminants (SR) are reared for meat production under pasture conditions. Intensive rotational grazing systems (irrigated, fertilised and high stocked) allow reasonable levels of production but generate high post-grazing residues. Experiments were designed to control them. A system in which residuals were mown (RM) was tested in comparison to the control system (Residuals Remained, RR). The same design was carried out for two years with Creole goat (G) and Martinik sheep (S). An accelerated reproductive rate (3 parturitions over 2 years) was carried out. Systems were compared at three parturition seasons per year(dry, intermediate and rainy seasons). Each group was composed of 20 goats ($36.0{\pm}2.5kg$) or 20 ewes ($46.8{\pm}2.4kg$). The female body traits did not vary according to pasture management and seasons. The stocking rate averaged 1,400 kg LW/ha. The mean fertility rate for does varied significantly (p<0.05) within the kidding season, from $80.4{\pm}0.5%$ to $93.7{\pm}2.9%$ while the mean litter size was $2.30{\pm}0.07$ total kids born. No effect of pasture system was observed. Corresponding values for ewes were $83.2{\pm}12.8%$ vs. $75.6{\pm}12.5%$ (p<0.05) and $2.43{\pm}0.24$ vs. $2.03{\pm}0.29$ (p<0.01) total lambs born for SRM and SRR ewes, respectively. A seasonal effect was observed upon ewe performances. The preweaning mortality of kids and lambs averaged 16.3% and 14.4%, respectively. It was 7 and 9 percentage points more (p<0.01) for RR than for RM kids and lambs, respectively. For both species, weaning took place at an average age of $81.4{\pm}3.6days$. In Creole kids, live weight at birth and at weaning were $1.9{\pm}0.2kg$ and $8.9{\pm}0.8kg$, respectively. In the Martinik sheep, the traits averaged $2.9{\pm}0.2kg$ and $18.9{\pm}0.9kg$. For both traits in both species, significant (p<0.05) group${\times}$season interactions were recorded. The consequences of elimination of post-grazing residues varied according to the SR species, the environmental conditions and the animal physiological status. The forage characteristics were not limiting factors since forage availability in the RM systems (2,300 and 2,600 kg DM/ha, respectively) and chemical composition were at satisfactory levels (CP content averaged 12 and 10%). It is recommended to develop new grazing system which would allow the use of post-grazing residues instead of mowing the refusals.

Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula (북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용)

  • Choi, Woosuk;Ho, Chang-Hoi;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.565-571
    • /
    • 2014
  • A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.