• Title/Summary/Keyword: Seasonal energy

Search Result 418, Processing Time 0.031 seconds

Evapotranspiration Measurements using an Eddy Covariance Technique in a Mixed Forest and a rice paddy in Korea (에디 공분산으로 관측된 혼효림과 논에서의 증발산)

  • Kwon, Hyou-Jung;Kang, Min-Seok;Kim, Joon;Lee, Jung-Hoon;Jung, Sung-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.565-570
    • /
    • 2010
  • Evapotranspriation (ET) was measured by eddy covariance method in two key ecosystems in Korea: the Seolmacheon site (a mixed forest in a complex terrain, SMK) and the Cheongmicheon site (a homogeneous rice paddy, CRK). By using the multi-year observations (SMK: Sep. 2007 - Dec. 2009, CRK: Aug. 2008 - Dec. 2009), we quantified ET and analyzed its temporal variations and control mechanisms based on the radiatively coupled combination equation. During the study period, the accumulated precipitation was about 3213 mm for the SMK site, of which about 30% (i.e., 990 mm), returned to the atmosphere as ET. At the CRK site from Jan. - Dec., 2009, the annual ET was 553 mm, which was about 40% of the annual rainfall (of 1401 mm). Both sites showed a characteristic seasonality with mid-season depression in ET that are associated with the reduced amount of available energy during the monsoon season. The decoupling parameter (${\Omega}^*$), which indicates the measure of interaction between vegetation and the atmosphere, averaged about 0.4 for the SMK site and the CRK site during the growing season. The ET from both sites was more influenced by air saturation deficit and surface conductance than available energy.

  • PDF

Numerical experiments for the changes of currents by reclamation of land in Kwangyang Bay (매립으로 인한 광양만의 유동변화 수치실험)

  • 추효상
    • Journal of Environmental Science International
    • /
    • v.11 no.7
    • /
    • pp.637-650
    • /
    • 2002
  • This study presents an investigation of the changes of the currents in Kwangyang Bay due to the construction of harbor, reclamation and coastal developments. Currents were simulated by the numerical experiments with a diagnostic multi-level model and using the seasonal oceanographic data of temperature, salinity and ocean current. The values of kinetic and potential energies for the currents were calculated in cases of three topographical changes; before coastal developments, the existing state and after completion of the development project in Kwangyang Bay. The changes of currents due to the coastal developments are as follow; Kinetic energies of tide induced residual currents and wind driven currents decreased by 35~40 percent and 5 percent respectively, however those of density currents increased by 10 percent since the decrease of the coastal areas. Kinetic energy of residual currents including tide induced residual currents, density currents and wind driven currents reduced by 10 percent compared with before the coastal developments. Decrease of current velocity was greatest in summer. Therefore, in summer it was assumed that the Kwangyang Bay is more easily polluted by stratification and decrease of residual current than before the coastal developments carried out.

A Study on the Pollution of Bisphenol A in Surface Sediment around Gwangyang Bay (광양만 주변해역의 표층퇴적물 중 Bisphenol A의 오염에 관한 연구)

  • Cho Hyeon-Seo;Kim Yong-Ok;Shin Tai-Sun;Horiguchi Toshihiro
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.7 no.2
    • /
    • pp.104-110
    • /
    • 2004
  • This study was carried out to survey the pollution of bisphenol A(BPA) and total organic carbon(TOC) in surface sediments around Gwangyang bay. BPA is suspected chemicals as endocrine disruption. Gwangyang bay Is located on the mid south coast of Korea. It is a semi-closed bay which Yeosu petrochemical industrial complex, POSCO(Pohang Steel Company) and Gwangyang container harbor are located. The surface sediments were collected at 15 stations with gravity corer at October, 1999, February, May and August, 2000. Also, the stream and intertidal sediment were collected at 5 sites at August, 2000. Concentrations of BPA in surface sediments were in the range of 0.46 to 24.59 ng/g dry wt.. Seasonal range(mean value) of BPA are 0.59 to 9.00(1.88) ng/g dry wt. at October, 0.99 to 2.97(1.57) ng/g dry wt. at February, 0.46 to 24.59(2.53)ng/g dry wt. at May and 0.54 to 2.46 (1.29)ng/g dry wt. at August. BPA was seasonally fluctuated, and the highest mean value and range were detected at May, 2000. BPA was highly distributed in the inner part of Kwangyang bay than Yosu sound. Concentrations of BPA in stream and intertidal sediments showed the highest value in downstream near Yochon petrochemical industrial complex and Yondung stream. It suggests that the source of BPA are industrial wastewater and municipal sewage. TOC in surface sediments were in the range of 0.09∼1.22%. There was no any correlation between the BPA and TOC.

  • PDF

Estimating on the Erosion and Retreat Rates of Sea-cliff Slope Using the Datum-point in Pado-ri, the Western Coast of Korea (침식기준목을 이용한 파도리 해식애 사면의 침식·후퇴율 산정)

  • JANG, Dong-Ho;PARK, Ji-Hoon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.19 no.3
    • /
    • pp.71-82
    • /
    • 2012
  • This research was carried out to estimate annual erosion and retreat rates by using datum-point and to identify the characteristics and causes of seasonal variations of sea-cliff slope in Pado-ri, Taean-gun. In the result, the erosion and retreat rates of sea-cliff were increased from spring to summer. The rates were increased rapidly between August and October, caused by the effects of extreme weather events such as severe rainstorms and typhoons, etc. Since then, the erosion and retreat rates of sea-cliff were decreased gradually, but the rates were increased again in winter due to the storm surge and mechanical weathering resulting from the repeated freezing and thawing actions of bed rocks. The factors that affect erosion and retreat rates of sea-cliff include the number of days with antecedent participation and daily maximum wave height. In particular, it turned out that the erosion is accelerated by strong wave energy during storm surges and typhoons. The annual erosion and retreat rates of study area for the past two years(from May 2010 to May 2012) were approximately 44~60cm/yr in condition of differences in geomorphological and geological characteristics at each point. These erosion and retreat rates were found to be higher than results of previous researches. This is caused by coastal erosion forces strengthened by extreme weather events. The erosion and retreat process of sea-cliff in the study area is composed by denudation of onshore areas in addition to marine erosion(wave energy).

Prediction of Soil Moisture using Hydrometeorological Data in Selmacheon (수문기상자료를 이용한 설마천의 토양수분 예측)

  • Joo, Je Young;Choi, Minha;Jung, Sung Won;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.437-444
    • /
    • 2010
  • Soil moisture has been recognized as the essential parameter when understanding the complicated relationship between land surface and atmosphere in water and energy recycling system. It has been generally known that it is related with the temperature, wind, evaporation dependent on soil properties, transpiration due to vegetations and other constituents. There is, however, little research concerned about the relationship between soil moisture and these constitutes, thus it is needed to investigate it in detail. We estimated the soil moisture and then compared with field data using the hydrometerological data such as atmospheric temperature, specific humidity, and wind obtained from the Flux tower in Selmacheon, Korea. In the winter season, subterranean temperature showed highly positive correlation with soil moisture while it was negatively correlated from the spring to the fall. Estimation of seasonal soil moisture was compared with field measurements with the correlation of determination, R=0.82, 0.81, 0.82, and 0.96 for spring, summer, fall, and winter, respectively. Comprehensive relationship from this study can supply useful information about the downscaling of soil moisture with relatively large spatial resolutions, and will help to deepen the understanding of the water and energy recycling on the earth's surface.

A Study on the Estimation of Monthly Average River Basin Evaporation (월(月) 평균유역증발산량(平均流域蒸發散量) 추정(推定)에 관(關)한 연구(硏究))

  • Kim, Tai Cheol;Ahn, Byoung Gi
    • Korean Journal of Agricultural Science
    • /
    • v.8 no.2
    • /
    • pp.195-202
    • /
    • 1981
  • The return of water to the atmosphere from water, soil and vegetation surface is one of the most important aspects of hydrological cycle, and the seasonal trend of variation of river basin evaporation is also meaningful in the longterm runoff analysis for the irrigation and water resources planning. This paper has been prepared to show some imformation to estimate the monthly river basin evaporation from pan evaporation, potential evaporation, regional evaporation and temperature through the comparison with river basin evaporation derived from water budget method. The analysis has been carried out with the observation data of Yongdam station in the Geum river basin for five year. The results are summarized as follows and these would be applied to the estimation of river basin evaporation and longterm runoff in ungaged station. 1. The ratio of pan evaporation to river basin evaporation ($E_w/E_{pan}$) shows the most- significant relation at the viewpoint of seasonal trend of variation. River basin evaporation could be estimated from the pan evaporation through either Fig. 9 or Table-7. 2. Local coefficients of cloudness effect and wind function has been determined to apply the Penman's mass and energy transfer equation to the estimation of river basin evaporation. $R_c=R_a(0.13+0.52n/D)$ $E=0.35(e_s-e)(1.8+1.0U)$ 3. It seems that Regional evaporation concept $E_R=(1-a)R_C-E_p$ has kept functional errors due to the inapplicable assumptions. But it is desirable that this kind of function which contains the results of complex physical, chemical and biological processes of river basin evaporation should be developed. 4. Monthly river basin evaporation could be approximately estimated from the monthly average temperature through either the equation of $E_w=1.44{\times}1.08^T$ or Fig. 12 in the stations with poor climatological observation data.

  • PDF

Selecting the Optimal Research Time for Forest Birds Census in Each Season (산새류의 계절별 적정 조사시간 선정 연구)

  • Kim, Mi-Jeong;Lee, Soo-Dong;Kim, Ji-Suk
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.2
    • /
    • pp.219-229
    • /
    • 2013
  • This research is performed in order to suggest seasonal effective research time that is applied to wild birds research which lives in a forest. The subject area of this research is Mulgun-ri village forest in Samdong-Myeon, Namhe-gun. To investigate suitability of the project, existing land-use, existing vegetation, vegetational structure, and etc. of the subject and whole area are figured out. To suggest adequate research time, based on seasonal sun rise and set time for 3days, repetitive research is performed at hourly intervals. The subject area is connected with a forest and is possible for forest wild birds to flows in and provides various habitats and feeding areas. And also the subject area is a appropriate area for wild birds research and is like a natural forest in that a layer structure development of the forest itself, a distribution of Zelkova serrata and Aphananthe aspera and so on. 105 species which is observed in subject area are categorized and mountain birds are classified. After time-based peak value is selected in each season, hourly species richness, diversity, and index of similarity are analyzed as compared with the appearing number of species and individual bird. As a result, 7~11 hour is the most effective time in spring, and 8~9 hour is the best time. In summer, 6~9 hour is the most appropriate time when whole appearing species are similar to species structure. In fall, 7~11(30~60 minutes after sun rise) when wild birds movements are vigorous is analyzed easy to observe and 8~9 hour is the most appropriate research time because each analysis shows the best values. In winter, 7~12 hour is the most effective time although 10~11 hour is the best time but it is decided that similar results are drawn because hourly deviation is not so big except 1 hour before sun rise. In every four season, it is decided that 30~60 minutes after sun rise is appropriate to research a group of wild birds in the subject area.

Operation of High Performance Elutriation-Type Sludge Fermenter and Feasibility for Its Application (고성능 세정식 슬러지 산발효조의 운전 및 적용성 평가)

  • Ahn, Young-Ho;Speece, R.E.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.1
    • /
    • pp.85-92
    • /
    • 2005
  • The performance of a novel fermentation process, adopting a sludge blanket type configuration for higher hydrolysis/acidogenesis of the municipal primary sludge, was investigated under batch and semi-continuous conditions with various pH and temperature conditions. This acid elutriation slurry reactor provided higher system performance with a short HRT (5 days) and higher acidogenic effluent quality under pH 9 and thermophilic ($55^{\circ}C$) conditions. The hydrolysis of the sludge was revealed to be significantly dependent on seasonal effects for sludge characteristics but with little impact on acidogenesis. Based on the rainy season at the optimum conditions, VFA production and recovery fraction ($VFA_{COD}/COD$) were $0.18\;g\;VFA_{COD}\;g^{-1}\;VSS_{COD}$ and 63%. As byproducts, nitrogen and phosphorus releasing were $0.006\;g\;N\;g^{-1}\;VSS_{COD}$ and $0.003\;g\;P\;g^{-1}\;VSS_{COD}$, respectively. For the mass balance in a full-scale plant($Q=158,880\;m^3\;day^{-1}$) based on the rainy season, the VFA and non-VFA(as COD) production were $3,110\;kg\;VFA_{COD}\;day^{-1}$ and $1,800\;kg\;COD\;day^{-1}$, resulting in an increase of organics of $31\;mg\;COD\;L^{-1}$ and $20\;mg\;VFA_{COD}\;L^{-1}$ and nutrients of $0.7\;mg\;N\;L^{-1}$ and $0.3\;mg\;P\;L^{-1}$ in the influent sewage. The economical benefit from this process application was estimated to be about $67 per $1,000m^3$ of sewage except for energy requirements and also, better benefits can be expected during the dry season. Also, the results revealed that the process has various additional advantages such as pathogen-free stabilized solids production, excellent solids control and economical benefits.

Relationships between Insensible Perspiration and Thermo Physiological Factors during Wearing Seasonal Clothing Ensembles in Comfort (쾌적한 상태에서 계절별 의복을 착용하고 있는 동안 불감증설과 온열 생리 요소들 간의 관련성)

  • Lee, Joo-Young;Choi, Jeong-Wha;Park, Joon-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.12
    • /
    • pp.1700-1709
    • /
    • 2007
  • The purpose of this study was to examine the relationships between thermo-physiological factors and the insensible loss of body weight(IL) of resting women wearing seasonal comfortable clothing. Air temperature was maintained at a mean of 22.5, 24.7, and 16.8 for spring/fall, summer and winter, respectively. We selected a total of 26 clothing ensembles(8 ensembles for spring/fall, 7 ensembles for summer, and 11 ensembles for winter). The results showed that 1) IL was $19{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for spring/fall environment, $21{\pm}5g{\cdot}m^{-2}{\cdot}hr$ for summer, $18{\pm}6{\cdot}m^{-2}{\cdot}hr$ for winter(p<.001). 2) Insensible water loss through respiratory passage(IWR) showed the reverse tendency to IL. IWR was $6{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for winter and $5{\pm}1g{\cdot}m^{-2}{\cdot}hr$ for summer. This difference was significant(p<.001). 3) The proportion of IWR out of whole insensible water loss(IW), had a mean of the mean 28% for summer and 38% for winter(p<.001). 4) In comfort, the heat loss by IW out of heat production had a mean of 25% for spring/fall, 27% for summer, and 23% for winter. 5) There was a weak negative correlation between It and clothing insulation/body surface area covered by clothing. 6) There were significant correlations between IL and air temperature$(T_a)$, air humidity$(H_a)$, energy metabolism, ventilation, mean skin temperature $\={T}_{sk})$ and clothing microclimate humidity$(H_{clo})$. However, the coefficients were less than 0.5. In conclusion, there were weak relationships between the IL and thermo-physiological factors. However, when subjects rested in thermal comfort, the IL was maintained in a narrow range even though the clothing insulation and air temperature were diverse.

Environmental and Physiological Factors on Milk Yields and Compositions of Holstein Cows in Korea (Holstein 젖소에 있어서 유량 및 유성분에 미치는 환경 및 생리적 요인)

  • Han, K.J.;Ahn, J.H.;Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.3
    • /
    • pp.335-346
    • /
    • 2004
  • Factors associated with milk urea nitrogen on milk yield and milk composition were investigated in this study regarding feeding management and Physiological status of lactating cows. The data for 3 years between 1999 and 2002 for this study were collected from 129,645 cows by Korean Agricultural Cooperatives Federation. The objectives of this study were to describe the relationships between milk urea concentrations and seasonal factors, cow factors and production of milk, milk fat, protein and somatic cell score(SCS). Milk urea was highest in summer and it also showed a nonlinear association with milk yield. Milk yield was higher at milk urea concentrations of 21 ${\sim}$ 24mg/dl, however it decreased at higher level of milk urea concentrations than 24mg/dl. Milk urea was higher with increased parities of cows and in particular, at 3 to 4 parities. There was a negative association between milk urea and SCS in milk. SCS in milk was lowest at milk urea concentrations of 2l${\sim}$24mg/dl. Milk fat and milk protein were greatly affected by days in milk(DIM), year of birth, season and milk urea concentrations, respectively. While milk urea increased in summer, milk fat and protein were decreased. Milk protein decreased according to longer days in milk. With regard to the influences of parity, milk protein in overall was negatively correlated to milk urea in all lactations, however the extent of decrease of milk protein at high concentrations of milk urea was bigger at third lactation. The balanced supply of energy and protein to the animals might have greatly affected the urea concentrations and protein content of milk.