• Title/Summary/Keyword: Seasonal energy

Search Result 418, Processing Time 0.03 seconds

An Analysis of Wind Energy Resources using Synoptic Observational Data in North Korea (종관 바람 관측 자료를 이용한 북한 지역의 풍력자원 분석)

  • Yun, Jun-Hee;Seo, Eun-Kyoung;Park, Young-San;Kim, Hak-Seong
    • Journal of the Korean earth science society
    • /
    • v.31 no.3
    • /
    • pp.225-233
    • /
    • 2010
  • Wind power density distribution over the North Korea territory was investigated by using 30-year wind observations at 27 meteorological stations. The mean annual wind power density over North Korea turned out to be 58.6W/$m^2$, which corresponds to the wind power class of 1. The wind power density shows a seasonal variation, having the highest density in spring and the lowest in summer. In particular, the wind power density in summer is about a half of that in spring. The diurnal variation of the wind power density shows that the highest and lowest densities occur in the afternoon and between 3 and 6 am in local time, respectively. The most potential wind energy generation regions are the Gaema Plateau in the central region, the northeast part of Hamgyeongbuk-do, the south coast of Pyongan-do and the west coast of Hwanghae-do. The mean annual wind power density in Changjin is 151.2W/$m^2$, which is equivalent to the class of 3. In Ryongyon, the annual mean wind power density is 102.4W/$m^2$, which belongs to the class of 2.

Model Development on the Fate and Transport of Chemical Species in Marsh Wetland Sediments Considering the Effects of Plants and Tides (식생과 조석의 영향을 고려한 연안습지 퇴적물 내 물질거동 모형의 개발)

  • Park, Do-Hyun;Wang, Soo-Kyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.53-64
    • /
    • 2009
  • Wetlands can remove organic contaminants, metals and radionuclides from wastewater through various biogeochemical mechanisms. In this study, a mathematical model was developed for simulating the fate and transport of chemical species in marsh wetland sediments. The proposed model is a one-dimensional vertical saturated model which is incorporated advection, hydrodynamic dispersion, biodegradation, oxidative/reductive chemical reactions and the effects from external environments such as the growth of plants and the fluctuation of water level due to periodic tides. The tidal effects causes periodic changes of porewater flow in the sediments and the evapotranspiration and oxygen supply by plant roots affect the porewater flow and redox condition on in the rhizosphere along with seasonal variation. A series of numerical experiments under hypothetical conditions were performed for simulating the temporal and spatial distribution of chemical species of interests using the proposed model. The fate and transport of a trace metal pollutant, chromium, in marsh sediments were also simulated. Results of numerical simulations show that plant roots and tides significantly affect the chemical profiles of different electron acceptors, their reduced species and trace metals in marsh sediments.

Analysis of the Thermal Environment Characteristics of Thatched Roof for Eco-friendly Rural Housing Development -Focused on the Neolithic Thatched Roof Dugout Hut- (농촌 친환경 주거 개발을 위한 이엉지붕 열환경 특성 분석 -신석기시대 이엉지붕 움집을 대상으로-)

  • Song, Heon
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.16 no.1
    • /
    • pp.35-42
    • /
    • 2014
  • Due to the development of civilization, the humans is privileged the rich of technologies for housing thermal environment. But, this kind of technological development caused enough trouble of energy excessive consumption. For solve this problem, many researchers strive to exploit the low energy sustainable techniques. For such a reason, the eco-friendly techniques of vernacular house are resurfacing. These traditional techniques are applied to a development of eco-friendly modern housing. They are no longer recognized as outdated products. On this context, this study proposes an scientific analysis on the thermal environment characteristics of Neolithic thatched-roof dugout hut(Um house). So far the several studies have been carried out in viewpoint of the history and structural compositions of the Um house which has been used as the normal housing for about 1000 years in the Neolithic era, however the thermal characteristics analysis of the Um house has never been studied. Um house is not a housing which has been composed by the scientific analysis or architectural design technology, but evolved empirically over a long period. This study on the thermal environment characteristics of Um house would provide basic information for the development of korean eco-friendly rural housing by korean climate characteristics. In this study, the thermal environmental characteristics of the Um house in the Neolithic era was analysed experimentally. The results of this study could be summarized as follows: 1. When the solar insolation and the ambient temperature in the daytime were $420W/m^2$ and $17^{\circ}C$ respectively, the surface temperature of the Um house roof covered with the rice straw was $37^{\circ}C$ and that in the roof $32^{\circ}C$, and in the conditions above the air temperature in the room was $15^{\circ}C$. 2. When the ambient relative humidity was 40%, that in the room of the Um house 50%, and at the ambient relative humidity of 90~100%, that in the room was 60%. 3. Through the experimental analysis, it was verified that the enthalpy and relative humidity is in an inverse relationship. 4. In general the comfort degree in the living space is changed with the seasonal climate, also in this study, the comfort degree in the room of the Um house in October and November was higher than that in May and June.

Analysis of the Variation Pattern of the Wave Climate in the Sokcho Coastal Zone (속초 연안의 파랑환경 변화양상 분석)

  • Cho, Hong-Yeon;Jeong, Weon-Mu;Baek, Won-Dae;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-127
    • /
    • 2012
  • Exploratory data analysis was carried out by using the long-term wave climate data in Sokcho coastal zone. The main features found in this study are as follows. The coefficient of variations on the wave height and period are about 0.11 and 0.02, respectively. It also shows that the annual components of the wave height and period are dominant and their amplitudes are 0.24 m and 0.56 seconds, respectively. The amount of intra-annual variation range is about two times greater than that of the inter-annual variation range. The distribution shapes of the wave data are very similar to the log-normal and GEV(generalized extreme value) functions. However, the goodness-of-fit tests based on the KS test show as "rejected" for all suggested density functions. Then, the structure of the timeseries wave height data is roughly estimated as AR(3) model. Based on the wave duration results, it is clearly shown that the continuous and maximum duration is decreased as a power function shape and the total duration is exponentially decreased. Meanwhile, the environment of the Sokcho coastal zone is classified as a wave-dominated environment.

Consideration on Changes of Density Stratification in Saemangeum Reservoir (새만금호 내 밀도 성층 변화 고찰)

  • Oh, Chan-Sung;Choi, Jung-Hoon
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.18 no.2
    • /
    • pp.81-93
    • /
    • 2015
  • The comprehensive master plan in November 2010 on Saemangeum internal development has been released, and there is a need for complementary measures related to in-situ monitoring methods in order to acquire water temperature (T) and salinity (S) data. Thus, these data are monitored and analyzed by Korea Rural Community Corporation continuously. The purposes of current study are to evaluate the distributions of seasonal T and S, sigma-t, and stratification parameter and to compare annual stratification system in 2011 and 2012. To achieve these objectives, monthly vertical changes of T, S, and sigma-t, which are reproduced by a kriging technique, have been analyzed. In summer, the temperature difference between surface and bottom layers varies from 2 to $3^{\circ}C$, and the stratification of T is considerably weak. The stratification of S occurs abruptly within depth of EL. (-)5 to EL. (-)10 m. Therefore, stratification is induced by sudden increasing of water inflow amount due to a localized downpour during the rainy season, and these stratification processes are strongly influenced by inflowing a fresh water from watersheds in estuary environment.

Tidal variations of Nutrient Concentration in Hampyeong Bay, West coast of Korea (서해 함평만에서 조위변화에 따른 영양염 변동)

  • Kang, Mi-Ran;Lim, Dhong-Il;Jang, Pung-Guk;Kim, Gi-Beum;Kang, Young-Shil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.202-208
    • /
    • 2009
  • In order to understand the circulation of nutrient between muddy tidal flat and the surrounding coastal area, tidal time-scale variations in nutrient concentrations were seasonally investigated at the entrance of Hampyeong Bay. The results show that the temperature was higher in ebb tide and lower in flood tide during the summer, but it was lower in ebb tide and higher in flood tide during the autumn/winter. The salinity was higher in flood tide and lower in ebb tide during the summer/winter because of the inflow of external sea water resulting from the increase in the tide level. By contrast, the salinity was lower in flood tide and higher in ebb tide during the autumn. Salinity difference was lower than 0.3 psu between flood tide and ebb tide during survey period. Meanwhile, all nutrient concentrations observed in Hampyeong Bay was lower in flood tide and higher in ebb tide during the summer, and by contrast, it was higher in flood tide and lower in ebb tide during the winter. Characteristically, no clear variation of concentrations was found depending on the tide level during the autumn. This tidal variations imply that the muddy tidal flat of Hampyeong Bay supplies nutrients to the seawater in summer and removes nutrient from the seawater in winter. During tidal cycle, seasonal variation of nutrient concentration in seawater is considered as the result of complex interactions between the mud flat and external sea water.

  • PDF

Characteristics of Temperature and Salinity observed at the Ieodo Ocean Research Station (이어도 종합해양과학기지에서 관측된 수온과 염분 자료의 특징)

  • Oh, Kyung-Hee;Park, Young-Gyu;Lim, Dong-Il;Jung, Hoi-Soo;Shim, Jae-Seol
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.225-234
    • /
    • 2006
  • Using the data from the sea water monitoring system installed at the Ieodo Ocean Research Station, we have analyzed the water properties around the station as well as the characteristics of the fresh water from the Changjiang River and the influence of typhoons on the sea water. In general, the accuracy and stability of the temperature data are high, but those of the salinity data are worse than the specification of the instruments. The daily variation of temperature and salinity is mainly controlled by the vertical motion of a water column due to semi-diurnal tide and diurnal change in the solar insolation. Seasonal change is prominent in temperature data. The freshwater from the Changjiang River is the main cause of large salinity variation. In August 2003 and August 2004, about 10 days before fresh water was observed near the Jeju Island, low salinity water was observed at the Ieodo Station. On the other hand, in July 2005 fresh water was observed at the station but not at around the Jeju Island. In other words, the fresh water observed at the Ieodo Station does not always expand to the Jeju Island. Two strong typhoons passed by the station in September 2003 and August 2004. The effects of the typhoons were lasted for 3 to 4 days.

  • PDF

Corrosivity of Atmospheres in the Korean Peninsula

  • Kim, Y.S.;Lim, H.K.;Kim, J.J.;Park, Y.S.
    • Corrosion Science and Technology
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 2011
  • The Korean Peninsula is located in the middle latitude of the northern hemisphere and has a clear 4-seasons and shows the typical temperate climate. Because of seasonal winds, it is cold and dry by a northwestern wind in the winter and it is hot and humid by a southeast wind in the summer. Also, temperature difference between the winter and the summer is large and it shows a rainy season from June to July but recently this regular trend may be greatly changed by an unusual weather phenomena. Since the Peninsula is east high west low type, the climate is complicated too. Because these geographical and climate characteristics can affect the properties of corrosion of metals and alloys, a systematic research on atmospheric corrosion in the Peninsula is required to understand and control the corrosion behavior of the industrial facilities. This paper analyzed the atmospheric corrosion factors for several environments in the Korean Peninsula and categorized the corrosivity of atmospheric corrosion of metals and alloys on the base of the related ISO standards. Annual pH values of rain showed the range of 4.5~5.5 in Korean Peninsula from 1999 to 2009 and coastal area showed relatively the low pH's rain. Annual $SO_2$ concentrations is reduced with time and its concentrations of every major cities were below the air quality standard, but $NO_2$concentration revealed a steady state and its concentration of Seoul has been over air quality standard. In 2007, $SO_2$classes of each sites were in $P_0{\sim}P_1$, and chloride classes were in $S_0{\sim}S_1$, and TOW classes were in ${\tau}_3{\sim}{\tau}_4$.That is, $SO_2$ and chloride classes were low but TOW class was high in Korean Peninsula. On the base of these environmental classes, corrosivity of carbon steel, zinc, copper, aluminium can be calculated that carbon steel was in C2-C3 classes and it was classified as low-medium, and zinc, copper, and aluminium showed C3 class and it was classified as medium.

A Six-Layer SVAT Model for Energy and Mass Transfer and Its Application to a Spruce(Picea abies [L].Karst) Forest in Central Germany (독일가문비나무(Picea abies [L].Karst)림(林)에서의 Energy와 물질순환(物質循環)에 대(對)한 SLODSVAT(Six-Layer One-Dimensional Soil-Vegetation-Atmosphere-Transfer) 모델과 그 적용(適用))

  • Oltchev, A.;Constantin, J.;Gravenhorst, G.;Ibrom, A.;Joo, Yeong-Teuk;Kim, Young-Chai
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.2
    • /
    • pp.210-224
    • /
    • 1996
  • The SLODSVAT consists of interrelated submodels that simulate : the transfer of radiation, water vapour, sensible heat, carbon dioxide and momentum in two canopy layers determined by environmental conditions and ecophysiological properties of the vegetation ; uptake and storage of water in the "root-stem-leaf" system of plants ; interception of rainfall by the canopy layers and infiltration and storage of rain water in the four soil layers. A comparison of the results of modeling experiments and field micro-climatic observations in a spruce forest(Picea abies [L].Karst) in the Soiling hills(Germany) shows, that the SLODSVAT can describe and simulate the short-term(diurnal) as well as the long-term(seasonal) variability of water vapour and sensible heat fluxes adequately to natural processes under different environmental conditions. It proves that it is possible to estimate and predict the transpiration and evapotranspiration rates for spruce forest ecosystems on the patch and landscape scales for one vegetation period, if certain meteorological, botanical and hydrological information for the structure of the atmospheric boundary layer, the canopy and the soil are available.

  • PDF

Studies on Growth and Chlorophyll Contents of Major Oak Tree Seedlings under Different Light Environment in Forest (임분내 광환경의 차이에 따른 주요 참나무 수종의 생장과 엽록소 함량 변화에 관한 연구)

  • 권기원;최정호;송호경;강병식
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.3
    • /
    • pp.20-28
    • /
    • 2003
  • This study was subjected to compare seasonal changes of survival rate, relative growth rate, and chlorophyll contents of major oak tree species including Quercus acctissima, Quercus mongolica, Quercus serrata, Quercus varibilis seedlings grown in Quercus acctissima forest under different light intensities. Three light intensities were 81% of sunlight, 34% of sunlight and 21% of sunlight. In each treatment, 100 tree seedlings were planted and survival rate, growth rate, and chlorophyll contents were measured. The highest survival rate was Quercus acctissima in 73% seedlings compared with those subjected to the other tree seedlings in 45~66%. Lowest survival rate was Quercus vnriabilis seedlings in 41%. Oaks tree species of the height, the root collar diameters of the relative growth were better in the seedlings grown in 81% light intensities of full sun. But growth rates decreased rapidly in the shade treatment of 21% light intensities of full sun. Lowest chlorophyll contents(chlorophyll a, b and total) were shown at 21% light intensities of full sun, lowest light intensity treatment in this study This result is thought growth and chlorophyll contents associated with light intensity Also, Physiological characteristics has to be investigated in near future because photosynthesis and chlorophyll contents were strongly related to tree growth with long periods.

  • PDF