• Title/Summary/Keyword: Seasonal FARIMA

Search Result 4, Processing Time 0.015 seconds

The Performance of Time Series Models to Forecast Short-Term Electricity Demand

  • Park, W.G.;Kim, S.
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.869-876
    • /
    • 2012
  • In this paper, we applied seasonal time series models such as ARIMA, FARIMA, AR-GARCH and Holt-Winters in consideration of seasonality to forecast short-term electricity demand data. The results for performance evaluation on the time series models show that seasonal FARIMA and seasonal Holt-Winters models perform adequately under the criterion of Mean Absolute Percentage Error(MAPE).

A Study on Internet Traffic Forecasting by Combined Forecasts (결합예측 방법을 이용한 인터넷 트래픽 수요 예측 연구)

  • Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.6
    • /
    • pp.1235-1243
    • /
    • 2015
  • Increased data volume in the ICT area has increased the importance of forecasting accuracy for internet traffic. Forecasting results may have paper plans for traffic management and control. In this paper, we propose combined forecasts based on several time series models such as Seasonal ARIMA and Taylor's adjusted Holt-Winters and Fractional ARIMA(FARIMA). In combined forecasting methods, we use simple-combined method, MSE based method (Armstrong, 2001), Ordinary Least Squares (OLS) method and Equality Restricted Least Squares (ERLS) method. The results show that the Seasonal ARIMA model outperforms in 3 hours ahead forecasts and that combined forecasts outperform in longer periods.

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

Performance Evaluation of Time Series Models using Short-Term Air Passenger Data

  • Park, W.G.;Kim, S.
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.6
    • /
    • pp.917-923
    • /
    • 2012
  • We perform a comparison of time series models that include seasonal ARIMA, Fractional ARIMA, and Holt-Winters models; in addition, we also consider hourly and daily air passenger data. The results of the performance evaluation of the models show that the Holt-Winters methods outperforms other models in terms of MAPE.