• Title/Summary/Keyword: Search-Based Software Engineering

Search Result 148, Processing Time 0.023 seconds

High Utility Itemset Mining Using Transaction Utility of Itemsets (항목집합의 트랜잭션 유틸리티를 이용한 높은 유틸리티 항목집합 마이닝)

  • Lee, Serin;Park, Jong Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.499-508
    • /
    • 2015
  • High utility itemset(HUI) mining refers to the discovery of itemsets with high utilities which are not less than a user-specified minimum utility threshold, by considering both the quantities and weight factors of items in a transaction database. Recently the utility-list based HUI mining algorithms have been proposed to avoid numerous candidate itemsets and the algorithms need the costly join operations. In this paper, we propose a new HUI mining algorithm, using the utility-list with additional attributes of transaction utility and common utility of itemsets. The new algorithm decreases the number of join operations and efficiently prunes the search space. Experimental results on both synthetic and real datasets show that the proposed algorithm outperforms other recent algorithms in runtime, especially when datasets are dense or contain many long transactions.

Exploratory research based on big data for Improving the revisit rate of foreign tourists and invigorating consumption (외국인 관광객 재방문율 향상과 소비 활성화를 위한 빅데이터 기반의 탐색적 연구)

  • An, Sung-Hyun;Park, Seong-Taek
    • Journal of Industrial Convergence
    • /
    • v.18 no.6
    • /
    • pp.19-25
    • /
    • 2020
  • Big data analytics are indispensable today in various industries and public sectors. Therefore, in this study, we will utilize big data analysis to search for improvement plans for domestic tourism services using the LDA analysis method. In particular, we have tried an exploratory approach that can improve tourist satisfaction, which can improve revisit and service, especially in Seoul, which has the largest number of foreign tourists. In this study, we collected and analyzed statistical data of Seoul City and Korea Tourism Organization and Internet information such as SNS via R. And we utilized text mining methods including LDA. As a result of the analysis, one of the purposes of visiting South Korea by foreigners was gastronomic tourism. We will try to derive measures to improve the quality of services centered on gastronomic tourism.

Distance Learning for Higher Education Applicants in War: Information Competence

  • Hanna, Truba;Iryna, Radziievska;Mykhailo, Sherman;Nataliia, Morska;Alla, Kulichenko;Nataliia, Havryliuk
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.291-297
    • /
    • 2022
  • Modern challenges in the educational environment force scientists and practitioners to search for an adequate answer. In particular, the war in Ukraine demonstrated the importance of developing information competence as one of the main means of distinguishing true information from a whole stream of fake news. This is especially relevant in connection with the introduction of distance learning when students must find and process a large amount of information on their own. Therefore, the purpose of the article is to analyze the training of higher education students through the prism of acquiring the necessary level of informational competence in war conditions. For this, general scientific and special research methods, as well as the experimental method, were used. In the results, the peculiarities of the interpretation of information competence in the distance form of education among modern researchers are determined, the psychological components of resistance to fakes are analyzed. Based on the conducted empirical measurements, it was established that thorough work on student education gives positive skills when working independently with Internet materials, strengthens the ability to distinguish false information and propaganda from the real state of affairs. The conclusions summarize the results of the empirical research and suggest ways to improve the situation with the formation of information competence.

A Heuristic Method of In-situ Drought Using Mass Media Information

  • Lee, Jiwan;Kim, Seong-Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.168-168
    • /
    • 2020
  • This study is to evaluate the drought-related bigdata characteristics published from South Korean by developing crawler. The 5 years (2013 ~ 2017) drought-related posted articles were collected from Korean internet search engine 'NAVER' which contains 13 main and 81 local daily newspapers. During the 5 years period, total 40,219 news articles including 'drought' word were found using crawler. To filter the homonyms liken drought to soccer goal drought in sports, money drought economics, and policy drought in politics often used in South Korea, the quality control was processed and 47.8 % articles were filtered. After, the 20,999 (52.2 %) drought news articles of this study were classified into four categories of water deficit (WD), water security and support (WSS), economic damage and impact (EDI), and environmental and sanitation impact (ESI) with 27, 15, 13, and 18 drought-related keywords in each category. The WD, WSS, EDI, and ESI occupied 41.4 %, 34.5 %, 14.8 %, and 9.3 % respectively. The drought articles were mostly posted in June 2015 and June 2017 with 22.7 % (15,097) and 15.9 % (10,619) respectively. The drought news articles were spatiotemporally compared with SPI (Standardized Precipitation Index) and RDI (Reservoir Drought Index) were calculated. They were classified into administration boundaries of 8 main cities and 9 provinces in South Korea because the drought response works based on local government unit. The space-time clustering between news articles (WD, WSS, EDI, and ESI) and indices (SPI and RDI) were tried how much they have correlation each other. The spatiotemporal clusters detection was applied using SaTScan software (Kulldorff, 2015). The retrospective and prospective cluster analyses were conducted for past and present time to understand how much they are intensive in clusters. The news articles of WD, WSS and EDI had strong clusters in provinces, and ESI in cities.

  • PDF

Mobile Cloud Context-Awareness System based on Jess Inference and Semantic Web RL for Inference Cost Decline (추론 비용 감소를 위한 Jess 추론과 시멘틱 웹 RL기반의 모바일 클라우드 상황인식 시스템)

  • Jung, Se-Hoon;Sim, Chun-Bo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.1
    • /
    • pp.19-30
    • /
    • 2012
  • The context aware service is the service to provide useful information to the users by recognizing surroundings around people who receive the service via computer based on computing and communication, and by conducting self-decision. But CAS(Context Awareness System) shows the weak point of small-scale context awareness processing capacity due to restricted mobile function under the current mobile environment, memory space, and inference cost increment. In this paper, we propose a mobile cloud context system with using Google App Engine based on PaaS(Platform as a Service) in order to get context service in various mobile devices without any subordination to any specific platform. Inference design method of the proposed system makes use of knowledge-based framework with semantic inference that is presented by SWRL rule and OWL ontology and Jess with rule-based inference engine. As well as, it is intended to shorten the context service reasoning time with mapping the regular reasoning of SWRL to Jess reasoning engine by connecting the values such as Class, Property and Individual which are regular information in the form of SWRL to Jess reasoning engine via JessTab plug-in in order to overcome the demerit of queries reasoning method of SparQL in semantic search which is a previous reasoning method.

A Study on Automated Fake News Detection Using Verification Articles (검증 자료를 활용한 가짜뉴스 탐지 자동화 연구)

  • Han, Yoon-Jin;Kim, Geun-Hyung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.569-578
    • /
    • 2021
  • Thanks to web development today, we can easily access online news via various media. As much as it is easy to access online news, we often face fake news pretending to be true. As fake news items have become a global problem, fact-checking services are provided domestically, too. However, these are based on expert-based manual detection, and research to provide technologies that automate the detection of fake news is being actively conducted. As for the existing research, detection is made available based on contextual characteristics of an article and the comparison of a title and the main article. However, there is a limit to such an attempt making detection difficult when manipulation precision has become high. Therefore, this study suggests using a verifying article to decide whether a news item is genuine or not to be affected by article manipulation. Also, to improve the precision of fake news detection, the study added a process to summarize a subject article and a verifying article through the summarization model. In order to verify the suggested algorithm, this study conducted verification for summarization method of documents, verification for search method of verification articles, and verification for the precision of fake news detection in the finally suggested algorithm. The algorithm suggested in this study can be helpful to identify the truth of an article before it is applied to media sources and made available online via various media sources.

Korean Dependency Parsing Using Stack-Pointer Networks and Subtree Information (스택-포인터 네트워크와 부분 트리 정보를 이용한 한국어 의존 구문 분석)

  • Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.6
    • /
    • pp.235-242
    • /
    • 2021
  • In this work, we develop a Korean dependency parser based on a stack-pointer network that consists of a pointer network and an internal stack. The parser has an encoder and decoder and builds a dependency tree for an input sentence in a depth-first manner. The encoder of the parser encodes an input sentence, and the decoder selects a child for the word at the top of the stack at each step. Since the parser has the internal stack where a search path is stored, the parser can utilize information of previously derived subtrees when selecting a child node. Previous studies used only a grandparent and the most recently visited sibling without considering a subtree structure. In this paper, we introduce graph attention networks that can represent a previously derived subtree. Then we modify our parser based on the stack-pointer network to utilize subtree information produced by the graph attention networks. After training the dependency parser using Sejong and Everyone's corpus, we evaluate the parser's performance. Experimental results show that the proposed parser achieves better performance than the previous approaches at sentence-level accuracies when adopting 2-depth graph attention networks.

An Efficient Clustering Algorithm based on Heuristic Evolution (휴리스틱 진화에 기반한 효율적 클러스터링 알고리즘)

  • Ryu, Joung-Woo;Kang, Myung-Ku;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.80-90
    • /
    • 2002
  • Clustering is a useful technique for grouping data points such that points within a single group/cluster have similar characteristics. Many clustering algorithms have been developed and used in engineering applications including pattern recognition and image processing etc. Recently, it has drawn increasing attention as one of important techniques in data mining. However, clustering algorithms such as K-means and Fuzzy C-means suffer from difficulties. Those are the needs to determine the number of clusters apriori and the clustering results depending on the initial set of clusters which fails to gain desirable results. In this paper, we propose a new clustering algorithm, which solves mentioned problems. In our method we use evolutionary algorithm to solve the local optima problem that clustering converges to an undesirable state starting with an inappropriate set of clusters. We also adopt a new measure that represents how well data are clustered. The measure is determined in terms of both intra-cluster dispersion and inter-cluster separability. Using the measure, in our method the number of clusters is automatically determined as the result of optimization process. And also, we combine heuristic that is problem-specific knowledge with a evolutionary algorithm to speed evolutionary algorithm search. We have experimented our algorithm with several sets of multi-dimensional data and it has been shown that one algorithm outperforms the existing algorithms.