• Title/Summary/Keyword: Search Keywords

Search Result 583, Processing Time 0.028 seconds

Relevance Feedback Agent for Improving Precision in Korean Web Information Retrieval System (한국어 웹 정보검색 시스템의 정확도 향상을 위한 연관 피드백 에이전트)

  • Baek, Jun-Ho;Choe, Jun-Hyeok;Lee, Jeong-Hyeon
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1832-1840
    • /
    • 1999
  • Since the existed Korean Web IR systems generally use boolean system, it is difficult to retrieve the information to be wanted at one time. Also, because of the feature that web documents have the frequent abbreviation and many links, the keyword extraction using the inverted document frequency extracts the improper keywords for adding ambiguous meaning problem. Therefore, users must repeat the modification of the queries until they get the proper information. In this paper, we design and implement the relevance feedback agent system for resolving the above problems. The relevance feedback agent system extracts the proper information in response to user's preferred keywords and stores these keywords in preference DB table. When users retrieve this information later, the relevance feedback agent system will search it adding relevant keywords to user's queries. As a result of this method, the system can reduce the number of modification of user's queries and improve the efficiency of the IR system.

  • PDF

A Design of Similar Video Recommendation System using Extracted Words in Big Data Cluster (빅데이터 클러스터에서의 추출된 형태소를 이용한 유사 동영상 추천 시스템 설계)

  • Lee, Hyun-Sup;Kim, Jindeog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.172-178
    • /
    • 2020
  • In order to recommend contents, the company generally uses collaborative filtering that takes into account both user preferences and video (item) similarities. Such services are primarily intended to facilitate user convenience by leveraging personal preferences such as user search keywords and viewing time. It will also be ranked around the keywords specified in the video. However, there is a limit to analyzing video similarities using limited keywords. In such cases, the problem becomes serious if the specified keyword does not properly reflect the item. In this paper, I would like to propose a system that identifies the characteristics of a video as it is by the system without human intervention, and analyzes and recommends similarities between videos. The proposed system analyzes similarities by taking into account all words (keywords) that have different meanings from training videos, and in such cases, the methods handled by big data clusters are applied because of the large scale of data and operations.

A Study on Research Trends in Literacy Education through a Key word Network Analysis (키워드 네트워크 분석을 통한 리터러시 교육 연구 동향)

  • Lee, Woo-Jin;Baek, Hye-Jin
    • Journal of Digital Convergence
    • /
    • v.20 no.5
    • /
    • pp.53-59
    • /
    • 2022
  • The purpose of this study is to examine the factors related to learning through analysis of domestic research trends in literacy and to present the direction of literacy education. Research papers from 1993 to February 2022 were collected using RISS. 'Literacy' and 'Education' were used as search keywords, and 200 papers were selected for analysis. As a result of analysis using keyword network analysis, 118 keywords appeared at least three times out of a total of 810 keywords. The order of the keywords with the highest frequency is 'digital literacy', 'media literacy', and 'elementary school'. The following direction was suggested through the analysis results. First, it is required to establish an online teaching and learning resource platform and link it with education policy. Second, it is necessary to set literacy competencies and seek ways to improve competencies. Third, a digital-based convergence education model should be developed. This study is meaningful in that it analyzed the most recent literacy studies and suggested the direction of literacy education.

Group-wise Keyword Extraction of the External Audit using Text Mining and Association Rules (텍스트마이닝과 연관규칙을 이용한 외부감사 실시내용의 그룹별 핵심어 추출)

  • Seong, Yoonseok;Lee, Donghee;Jung, Uk
    • Journal of Korean Society for Quality Management
    • /
    • v.50 no.1
    • /
    • pp.77-89
    • /
    • 2022
  • Purpose: In order to improve the audit quality of a company, an in-depth analysis is required to categorize the audit report in the form of a text document containing the details of the external audit. This study introduces a systematic methodology to extract keywords for each group that determines the differences between groups such as 'audit plan' and 'interim audit' using audit reports collected in the form of text documents. Methods: The first step of the proposed methodology is to preprocess the document through text mining. In the second step, the documents are classified into groups using machine learning techniques and based on this, important vocabularies that have a dominant influence on the performance of classification are extracted. In the third step, the association rules for each group's documents are found. In the last step, the final keywords for each group representing the characteristics of each group are extracted by comparing the important vocabulary for classification with the important vocabulary representing the association rules of each group. Results: This study quantitatively calculates the importance value of the vocabulary used in the audit report based on machine learning rather than the qualitative research method such as the existing literature search, expert evaluation, and Delphi technique. From the case study of this study, it was found that the extracted keywords describe the characteristics of each group well. Conclusion: This study is meaningful in that it has laid the foundation for quantitatively conducting follow-up studies related to key vocabulary in each stage of auditing.

Analysis of Korean Research Trends on Records Management Standards (기록관리표준에 관한 국내 연구동향 분석)

  • Sujin Heo;Sanghee Choi
    • Journal of the Korean Society for information Management
    • /
    • v.40 no.4
    • /
    • pp.351-373
    • /
    • 2023
  • This study aimed to analyze and collect research trends of archival management standards in Korea. For this purpose, keywords from the titles, author keywords, and abstracts of papers related to records management standards were statistically analyzed to investigate the major keywords with high-frequency. Network analysis with high frequency keywords was also conducted to identify the subject areas of research in archival management standards. The analysis period is from 2000 to the present, and a total of 212 papers were collected from domestic academic paper search sites such as RISS and ScienceON. As a result of the analysis, from 2000 to 2010, OAIS for archive design, digital record preservation with OAIS, and analysis on ISO standards were mainly conducted in research areas. From 2011 until now, records management certification and ISAD(G)'s conversion to RiC emerged as new research areas. This study will be expected to be basic data to understand research trends in records management standards in Korea and to be a reference for research on records management standards studies.

Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC (웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로)

  • Jun, Seung-Pyo;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.93-111
    • /
    • 2013
  • As Internet and information technology (IT) continues to develop and evolve, the issue of big data has emerged at the foreground of scholarly and industrial attention. Big data is generally defined as data that exceed the range that can be collected, stored, managed and analyzed by existing conventional information systems and it also refers to the new technologies designed to effectively extract values from such data. With the widespread dissemination of IT systems, continual efforts have been made in various fields of industry such as R&D, manufacturing, and finance to collect and analyze immense quantities of data in order to extract meaningful information and to use this information to solve various problems. Since IT has converged with various industries in many aspects, digital data are now being generated at a remarkably accelerating rate while developments in state-of-the-art technology have led to continual enhancements in system performance. The types of big data that are currently receiving the most attention include information available within companies, such as information on consumer characteristics, information on purchase records, logistics information and log information indicating the usage of products and services by consumers, as well as information accumulated outside companies, such as information on the web search traffic of online users, social network information, and patent information. Among these various types of big data, web searches performed by online users constitute one of the most effective and important sources of information for marketing purposes because consumers search for information on the internet in order to make efficient and rational choices. Recently, Google has provided public access to its information on the web search traffic of online users through a service named Google Trends. Research that uses this web search traffic information to analyze the information search behavior of online users is now receiving much attention in academia and in fields of industry. Studies using web search traffic information can be broadly classified into two fields. The first field consists of empirical demonstrations that show how web search information can be used to forecast social phenomena, the purchasing power of consumers, the outcomes of political elections, etc. The other field focuses on using web search traffic information to observe consumer behavior, identifying the attributes of a product that consumers regard as important or tracking changes on consumers' expectations, for example, but relatively less research has been completed in this field. In particular, to the extent of our knowledge, hardly any studies related to brands have yet attempted to use web search traffic information to analyze the factors that influence consumers' purchasing activities. This study aims to demonstrate that consumers' web search traffic information can be used to derive the relations among brands and the relations between an individual brand and product attributes. When consumers input their search words on the web, they may use a single keyword for the search, but they also often input multiple keywords to seek related information (this is referred to as simultaneous searching). A consumer performs a simultaneous search either to simultaneously compare two product brands to obtain information on their similarities and differences, or to acquire more in-depth information about a specific attribute in a specific brand. Web search traffic information shows that the quantity of simultaneous searches using certain keywords increases when the relation is closer in the consumer's mind and it will be possible to derive the relations between each of the keywords by collecting this relational data and subjecting it to network analysis. Accordingly, this study proposes a method of analyzing how brands are positioned by consumers and what relationships exist between product attributes and an individual brand, using simultaneous search traffic information. It also presents case studies demonstrating the actual application of this method, with a focus on tablets, belonging to innovative product groups.

A Study on Personalized Search System Based on Subject Classification (주제분류 기반의 개인화 검색시스템에 관한 연구)

  • Kim, Kwang-Young;Kwak, Seung-Jin
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.45 no.4
    • /
    • pp.77-102
    • /
    • 2011
  • The purpose of this study is to design, implement and evaluate a personalized search system using gathered information on users to provide more accurate search results. For this purpose, a hybrid-based user profile is constructed by using subject classification. In order to evaluate the performance of the proposed system, experts directly measured and evaluated MRR, MAP and usability by using the Korean journal articles of science and technology DB. Its performance was better than the general search system in the area of "Computer Science" and "Library and Information Science". Especially better results were shown when tested on ambiguous keywords. Evaluation through in-depth interviews proved that the proposed personalized search system was more efficient in looking up and obtaining information. In addition, the proposed personalized search system provided a variety of recommendation systems which proved helpful in navigating for new information. High user satisfaction ratings on the proposed personalized search system were another proof of its usefulness. In this study, we were able to prove through expert evaluation that the proposed personalized search system was more efficient in information retrieval.

Patent data analysis using clique analysis in a keyword network (키워드 네트워크의 클릭 분석을 이용한 특허 데이터 분석)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1273-1284
    • /
    • 2016
  • In this paper, we analyzed the patents on machine learning using keyword network analysis and clique analysis. To construct a keyword network, important keywords were extracted based on the TF-IDF weight and their association, and network structure analysis and clique analysis was performed. Density and clustering coefficient of the patent keyword network are low, which shows that patent keywords on machine learning are weakly connected with each other. It is because the important patents on machine learning are mainly registered in the application system of machine learning rather thant machine learning techniques. Also, our results of clique analysis showed that the keywords found by cliques in 2005 patents are the subjects such as newsmaker verification, product forecasting, virus detection, biomarkers, and workflow management, while those in 2015 patents contain the subjects such as digital imaging, payment card, calling system, mammogram system, price prediction, etc. The clique analysis can be used not only for identifying specialized subjects, but also for search keywords in patent search systems.

A Semantic Social Network System in Korea Institute of Oriental Medicine (한국한의학연구원 시맨틱 소셜 네트워크 시스템 구축)

  • Kim, Sang-Kyun;Jang, Hyun-Chul;Kim, Chul;Yea, Sang-Jun;Kim, Jin-Hyun;Song, Mi-Young
    • Korean Journal of Oriental Medicine
    • /
    • v.16 no.2
    • /
    • pp.91-99
    • /
    • 2010
  • In this paper, we designed and implemented a semantic social network system in Korea Institute of Oriental Medicine (abbreviated as KIOM). Our social network system provides the capabilities such as tracking search, ontology reasoning, ontology graph view, and personal information input, update and management. Tracking search provides the search results by the research information of relevant researchers using ontology, in addition to those by keywords. Ontology reasoning provides the reasoning for experts, mentors, and personal contacts. Users can easily browse the personal connections among researchers by traversing the ontology by graph viewer. These allows KIOM researchers to search other researchers who could aid the researches and to easily share their research information.

A Secure and Efficient E-Medical Record System via Searchable Encryption in Public Platform

  • Xu, Lei;Xu, Chungen;Zhang, Xing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.9
    • /
    • pp.4624-4640
    • /
    • 2017
  • This paper mainly presents a secure and efficient e-Medical Record System via searchable encryption scheme from asymmetric pairings, which could provide privacy data search and encrypt function for patients and doctors in public platform. The core technique of this system is an extension public key encryption system with keyword search, which the server could test whether or not the files stored in platform contain the keyword without leaking the information about the encrypted file. Compared with former e-medical record systems, the system proposed here has several superior features: (1)Users could search the data stored in cloud server contains some keywords without leaking anything about the origin data. (2) We apply asymmetric pairings to achieve shorter key size scheme in the standard model, and adopt the dual system encryption technique to reduce the scheme's secure problem to the hard Symmetric External Diffie-Hellman assumption, which could against the variety of attacks in the future complex network environment. (3) In the last of paper, we analyze the scheme's efficiency and point out that our scheme is more efficient and secure than some other classical searchable encryption models.