• Title/Summary/Keyword: Seamless mobility

Search Result 214, Processing Time 0.025 seconds

Design and Verification of Seamless Handoff Protocol over Mobile IPv4 (Mobile IPv4에서의 Seamless 핸드오프 프로토콜 설계 및 검증)

  • 박병준;송병권;정태의
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10c
    • /
    • pp.58-60
    • /
    • 2003
  • Mobile IP는 현재의 인터넷에서 노드가 링크를 변화시킬 때 통신이 지속 될 수 있도록 이동성(Mobility)을 제공하기 위한 방안이다. Mobile IP는 MN(Mobile Node)이 HA(Home Agent) 와 FA(Foreign Agent)사이에서 링크를 변화시킬 때 CN(Correspondent Node)과 지속적인 통신을 할 수 있도록 한다. 그러나 FA에서 FA로 MN이 노드의 위치를 바꿀 때에는 핸드오프(Handoff)가 발생하여 패킷이 손실 될 수도 있다. 본 논문은 MN이 FA에서 다른 FA로 이동할 때 발생하는 패킷 손실과 순서변경에 대한 경우를 살펴 이를 해결하기 위한 Seamless 핸드오프 프로토콜을 기술하고 이를 검증한다.

  • PDF

A study of network mobility for internet service in railway system (철도에서 네트워크 이동성 적용 방안)

  • Cho, B.K.
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.255-257
    • /
    • 2004
  • The study for ubiquitous computing infra is proceeding actively, it make possible to use service and access network anywhere, anytime because of wire/wireless communication technology and progress of hardware. Domestically, study for the network mobility support technology which is the key technology for future ubiquitous computing realization have progressed, but that is insufficient. Especially, there is no study for independent mobility support study about railway wireless network. So, this study propose network mobility management technology for mobile network infra in railway and proper network model in train.

  • PDF

Design of MPLS-based micro-mobility management protocol with QoS support

  • Kim, Byung-Chul;Lee, Jae-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.1B
    • /
    • pp.64-70
    • /
    • 2003
  • In order to provide seamless wireless Internet service, the basic mobile IP protocol should be enhanced to solve packet loss problem from large registration latency because frequent handoffs occur in cellular networks. In this paper, we suggest a new micro-mobility management protocol based on MPLS while supporting Qos, and evaluate its performance using simulation. We use MPLS label switching techniuqe in cellular access networks to simplify location management and speed up packet transmission. We adopt context transfer procedure to minimize the delay needed to attain prior level of service after handoff Packet loss can be minimized during handoff by transmitting received packets from old BSLER to new BSLER using a spliced LSP between them. Simulation results show that the proposed MPLS-based micro-mobility management protocol provides a seamless handoff and supports QoS of user traffic.

An Efficient Hand-off Mechanism in Micro-Domain (마이크로 도메인에서의 효율적인 핸드오프 방안)

  • Kim Eung do;Kim Hwa sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3A
    • /
    • pp.195-202
    • /
    • 2005
  • The third generation cellular system requires the seamless macro/micro mobility support. Mobile IP provides a simple and scalable macro mobility solution but lacks the support for fast handoff control in micro-domain. However, A lot of micro-mobility protocols have been proposed to complement the Mobile IP capability by providing the fast, seamless, and local handoff control. Cellular If also provides the seamless mobility support in limited geographical area. But semi-soft handoff mechanism of Cellular IP produces the packet loss and the duplication problem due to the difference of propagation delay between the new path and the old path. In this paper, we present an efficient handoff mechanism in micro-domain. The proposed handoff mechanism uses the SCD (Suitable Cross Delay) in order to minimize the packet loss and the duplication problem during the handoff. Also, the proposed mechanism is verified by the performance evaluation through the NS-2 Simulation.

Model and Architecture of User-Defined Networks for Seamless Mobility Management in Diverse Wireless Environment (다양한 무선 환경에서 끊김 없는 이동성 관리를 위한 사용자 정의 네트워크 모델 및 구조)

  • Chun, Seung-Man;Nah, Jae-Wook;Lee, Seung-Mu;Choi, Jun-Hyuk;Park, Jong-Tae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.11
    • /
    • pp.35-43
    • /
    • 2011
  • In this paper, we propose a novel architecture for seamless mobility management to provide users with seamless Internet connection when users roam between diverse wireless local area networks (WLANS) controlled by different management entities. There have been many researches in IETF, i.e., MIPv6, HMIPv6, and PMIPv6, to provide the mobility management. However, practically since wireless access points or access routers, which are managed by an individual manager or ISP managers, have different authentication scheme and the supported mobility management, the previous mobility management protocol developed by IETF can not guarantee the quality of service of application services as the mobile node performs the handover. To solve this drawback, we propose the mobility management scheme to provide QoS-guaranteed Internet services during the handover by configurating the wireless networks which is defined by users. More specifically, we present a model, the architecture and an algorithm for user-defined network (UDN) to provide the seamless Internet service. Finally, the performance of the proposed algorithm is evaluated by the network simulation tool.

Enhancing Service Availability in Multi-Access Edge Computing with Deep Q-Learning

  • Lusungu Josh Mwasinga;Syed Muhammad Raza;Duc-Tai Le ;Moonseong Kim ;Hyunseung Choo
    • Journal of Internet Computing and Services
    • /
    • v.24 no.2
    • /
    • pp.1-10
    • /
    • 2023
  • The Multi-access Edge Computing (MEC) paradigm equips network edge telecommunication infrastructure with cloud computing resources. It seeks to transform the edge into an IT services platform for hosting resource-intensive and delay-stringent services for mobile users, thereby significantly enhancing perceived service quality of experience. However, erratic user mobility impedes seamless service continuity as well as satisfying delay-stringent service requirements, especially as users roam farther away from the serving MEC resource, which deteriorates quality of experience. This work proposes a deep reinforcement learning based service mobility management approach for ensuring seamless migration of service instances along user mobility. The proposed approach focuses on the problem of selecting the optimal MEC resource to host services for high mobility users, thereby reducing service migration rejection rate and enhancing service availability. Efficacy of the proposed approach is confirmed through simulation experiments, where results show that on average, the proposed scheme reduces service delay by 8%, task computing time by 36%, and migration rejection rate by more than 90%, when comparing to a baseline scheme.

Network Architecture and Fast Vertical Handover Scheme for UMTS-WLAN Interworking (UMTS-WLAN 간 빠른 수직적 핸드오버 제공을 위한 연동망 모델 및 핸드오버 방식)

  • Kim, In-Cheol;Lee, Sung-Kuen;Kim, Eal-Lae;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.492-501
    • /
    • 2007
  • UMTS-WLAN interworking approach can make the best use of the advantages of both networks by eliminating the stand-alone defects of the two services. For the interworking mechanisms of WLANs and UMTS networks, two major solutions have been proposed, namely loose coupling and tight coupling. The loose coupling approach provides separate data paths for WLAN and UMTS. On the other hand, the tight coupling provides a full integration of the WLAN network and the UMTS core network. The loose coupling has been preferred due to the simplicity and less reconfiguration requirement. However, loose coupling is worse in seamless mobility, QoS provision, and network security. In order to lessen the problems involved in the UMTS-WLAN interworking approaches, we propose a new interworking network architecture and a fast vertical handover scheme by employing Mobility Anchor(MA) for interworking between the two different networks. MA can enable authentication and session initialization before L2 handover of the mobile terminal, so that the seamless and fast vertical handover become possible. Thru analysis and numerical experiments, we proved that the proposed scheme has been validated.

Satellite Mobility Pattern Scheme for Centrical and Seamless Handover Management in LEO Satellite Networks

  • Tuysuz, Aysegul;Alagoz, Fatih
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.451-460
    • /
    • 2006
  • Since low earth orbit (LEO) satellite constellations have important advantages over geosynchronous earth orbit (GEO) systems such as low propagation delay, low power requirements, and more efficient spectrum allocation due to frequency reuse between satellites and spotbeams, they are considered to be used to complement the existing terrestrial fixed and wireless networks in the evolving global mobile network. However, one of the major problems with LEO satellites is their higher speed relative to the terrestrial mobile terminals, which move at lower speeds but at more random directions. Therefore, handover management in LEO satellite networks becomes a very challenging task for supporting global mobile communication. Efficient and accurate methods are needed for LEO satellite handovers between the moving footprints. In this paper, we propose a new seamless handover management scheme for LEO satellites (SeaHO-LEO), which utilizes the handover management schemes aiming at decreasing latency, data loss, and handover blocking probability. We also present another interesting handover management model called satellite mobility pattern based handover management in LEO satellites (PatHO-LEO) which takes mobility pattern of both satellites and mobile terminals into account to minimize the handover messaging traffic. This is achieved by the newly introduced billboard manager which is used for location updates of mobile users and satellites. The billboard manager makes the proposed handover model much more flexible and easier than the current solutions, since it is a central server and supports the management of the whole system. To show the performance of the proposed algorithms, we run an extensive set of simulations both for the proposed algorithms and well known handover management methods as a baseline model. The simulation results show that the proposed algorithms are very promising for seamless handover in LEO satellites.

A Robust Mobile Video Streaming in Heterogeneous Emerging Wireless Systems

  • Oh, Hayoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.9
    • /
    • pp.2118-2135
    • /
    • 2012
  • With the rapid development of heterogeneous emerging wireless technologies and numerous types of mobile devices, the need to support robust mobile video streaming based on the seamless handover in Future Internet is growing. To support the seamless handover, several IP-based mobility management protocols such as Mobile IPv6 (MIPv6), fast handover for the MIPv6 (FMIPv6), Hierarchical MIPv6 (HMIPv6) and Proxy Mobile IPv6 (PMIPv6) were developed. However, MIPv6 depreciates the Quality-of-Service (QoS) and FMIPv6 is not robust for the video services in heterogeneous emerging wireless networks when the Mobile Node (MN) may move to another visited network in contrast with its anticipation. In Future Internet, the possibility of mobile video service failure is more increased because mobile users consisting of multiple wireless network interfaces (WNICs) can frequently change the access networks according to their mobility in heterogeneous wireless access networks such as 3Generation (3G), Wireless Fidelity (Wi-Fi), Worldwide Interoperability for Microwave Access (WiMax) and Bluetooth co-existed. And in this environment, seamless mobility is coupled according to user preferences, enabling mobile users to be "Always Best Connected" (ABC) so that Quality of Experience is optimised and maintained. Even though HMIPv6 and PMIPv6 are proposed for the location management, handover latency enhancement, they still have limit of local mobility region. In this paper, we propose a robust mobile video streaming in Heterogeneous Emerging Wireless Systems. In the proposed scheme, the MN selects the best-according to an appropriate metric-wireless technology for a robust video streaming service among all wireless technologies by reducing the handover latency and initiation time when handover may fail. Through performance evaluation, we show that our scheme provides more robust mechanism than other schemes.

Global Mobility Management Scheme for Seamless Mobile Multicasting Service Support in PMIPv6 Networks

  • Song, Myungseok;Cho, Jun-Dong;Jeong, Jong-Pil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.2
    • /
    • pp.637-658
    • /
    • 2015
  • The development of multimedia applications has followed the development of high-speed networks. By improving the performance of mobile devices, it is possible to provide high-transfer-speed broadband and seamless mobile multicasting services between indoor and outdoor environments. Multicasting services support efficient group communications. However, mobile multicasting services have two constraints: tunnel convergence and handoff latency. In order to solve these problems, many protocols and handoff methods have been studied. In this paper, we propose inter local mobility anchor (inter-LMA) optimized handoff model for mobile multicasting services in proxy mobility IPv6 based (PMIPv6-based) networks. The proposed model removes the tunnel convergence issue and reduces the router processing costs. Further, it the proposed model allows for the execution of fast handoff operations with adaptive transmission mechanisms. In addition, the proposed scheme exhibits low packet delivery costs and handoff latency in comparison with existing schemes and ensures fast handoff when moving the inter-LMA domain.