• Title/Summary/Keyword: Sealing surface

Search Result 241, Processing Time 0.03 seconds

MTA APPLICATION TO PATIENTS WITH CELLULITIS CAUSED BY DENS EVAGINATUS (치외치로 인한 봉와직염 환자에서 MTA를 이용한 치험례)

  • Koo, Jung-Eun;Baek, Kwang-Woo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.36 no.2
    • /
    • pp.310-317
    • /
    • 2009
  • Dens evaginatus is a dental anomaly involving an extra cusp or tubercle that protrudes from the occlusal surface of the affected tooth. The prevalence of dens evaginatus is 1 to 4 percent, and dens evaginatus is observed most commonly in premolars. It can be worn or fractured easily, resulting in pulpal exposure, pulpal infection, loss of vitality, facial infection and osteomyelitis. Since the tooth frequently has the immature apex when the tubercle is fractured, there is difficulty in treatment. Although calcium hydroxide is widely used for pulp treatment of an immature permanent tooth, several alternatives have been suggested to reduce patient's appointments. Mineral trioxide aggregate is considered biocom-patible and has excellent marginal sealing ability. In addition, it can minimize patient's visits. In this case report, apexification with MTA was attempted on the immature premolars in patients with cellulitis patient, caused by pulp necrosis due to dens evaginatus. Favorable clinical and radiologic results were achieved. In one case, continued root formation was observed.

  • PDF

IN VIVO EFFECTS OF DENTIN BONDING AGENTS ON DENTINAL FLUID MOVEMENT AND INTRADENTAL NERVE ACTIVITY (In vivo에서 상아질 접착제 도포가 상아세관액 이동과 치수신경활동에 미치는 영향)

  • Son, Ho-Hyun;Lee, Kwang-Won;Park, Soo-Jung
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.1
    • /
    • pp.425-435
    • /
    • 1996
  • The effect of application of dentin bonding agent to the exposed dentin on the intradental nerve activity (INA), dentinal fluid movement and sealing of the dentinal tubules, was investigated in this study. The INA was recorded from the single pulp nerve unit dissected from the inferior alveolar nerve. And specimen of dentin was observed by SEM. Dentinal fluid 'movement through exposed dentin surface was measured before and after the application of dentin bonding agent. 1. Eight Ao-fiber units (conduction velocity: $8.0{\pm}4.0m$/sec) were identified. 4M NaCl evoked an irregular burst of action potentials which ceased immediately after washing. 2. In 4 $A{\delta}$-fiber units, appliction of All Bond 2 completely abolished the INA induced by 4M NaCl. Also, application of Scotchbond Multipurpose(SBMP) totally abolished the INA induced by 4M NaCl in 4 $A{\delta}$-fiber units. 3. Before the application of dentin bonding agent, outward dentinal fluid movement of $10.2{\pm}5.7\;pl{\cdot}s^{-1}{\cdot}mm^{-2}$ was obsered. But after the application of dentin bonding agent the movement of dentinal fluid was stopped. 4. The gap width of 2-$3{\mu}m$ was formed between exposed dentin and adhesive resin in the specimens applied with dentin bonding agents of All Bone 2 and SBMP. But the formation of hybrid layer and the penetration of resin into were dentinal tubules were not clearly observed in interface between dentin and adhesive resin.

  • PDF

The characteristics of premeability and formation of clay cake by electrophoresis technique (전기영동기법에 의한 점토케이크의 형성과 투수특성)

  • Kim, Jong-Yun;Kim, Tae-Ho;Kim, Dae-Ra;Han, Sang-Jae;Kim, Soo-Sam
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.938-946
    • /
    • 2008
  • This study is on sealing leakage holes where are in landfills to make clay cakes with clay particles, which have a negative surface charge using the method of electrophoresis. Generally, electrophoresis is the motion of charged particles in a colloid under the influence of an electric field; particles with a positive charge go to the cathode and negative to the anode. In this study in order to develop the prevention system of leakages of the leachate in landfills, one-dimensional electrophoresis tests were conducted for determining the properties of the motion of the electrophoresis and cutoff using the method of electrophoresis depending on various the effect factors such as types of clays, concentrations of the clays, and applied electric field. In case of the experiments of determining the optimum clays, Na and Ca-Bentonite, Na and Ca-Montmorillonite, which have greater zeta-potential, cation, exchange capacity as well as ability of cutoff, and Micro-cement inducing cementation were chosen and then the effect of those clays was investigated. Moreover, the properties of the motion and settling of the clays were investigated following electric field varied from 0 to 1V/cm at different concentration of the clays in order to determine both the properties of the motion of the clays and the efficiency of electric field when applying different direct current. Ultimately, the ability of cutoff was examined through measuring the permeability of the clay cakes derived from the one-dimensional electrophoresis tests.

  • PDF

Evaluation in Physiomechanical Characteristics of Carbonized Oriented Strand Board by Different Carbonizing Conditions

  • Lee, Min;Park, Sang-Bum;Lee, Sang-Min;Son, Dong-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.2
    • /
    • pp.163-171
    • /
    • 2014
  • Environmental issues about indoor air quality have been increased and focused on volatile organic compounds (VOCs) caused cancer, asthma, and skin disease. Reducing VOCs has been attempted in many different methods such as using environmentally friendly materials and air cleaner or purifier. Charcoal is well known material for absorbing VOCs. Therefore, carbonized board from medium density fiberboard has been developed. We assumed that the source of carbonized boards can be any type of wood-based panels. In this study, carbonized boards were manufactured from oriented strand board (OSB) at 400, 600, 800, and $1000^{\circ}C$. Each carbonized OSB (c-OSB) was evaluated and determined physiomechanical characteristics such as exterior defects, dimensional shrinkage, modulus of elasticity, and bending strength. No external defects were observed on c-OSBs at all carbonizing conditions. As carbonizing temperature increased, less porosity between carbonized wood fibers was observed by SEM analysis. The higher rate of dimensional shrinkage was observed on c-OSB at $1000^{\circ}C$ (66%) than c-OSB at 400, 600, and $800^{\circ}C$ (47%, 58%, and 63%, respectively). The densities of c-OSBs were lower than original OSB, but there was no significant different among the c-OSBs. The bending strength of c-OSB increased 1.58 MPa (c-OSB at $400^{\circ}C$) to 8.03 MPa (c-OSB at $1000^{\circ}C$) as carbonization temperature increased. Carbonization temperature above $800^{\circ}C$ yielded higher bonding strength than that of gypsum board (4.6 MPa). In conclusion, c-OSB may be used in sealing and wall for decorating purpose without additional artwork compare to c-MDF which has smooth surface.

An Experimental Study on the Erosion of a Compacted Calcium Bentonite Block (압축된 칼슘벤토나이트 블록의 침식에 대한 실험적 연구)

  • Baik Min-Hoon;Cho Won-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.4
    • /
    • pp.341-348
    • /
    • 2005
  • Bentonite has been considered as a candidate buffer material in the underground repository for the disposal of high-level radioactive waste because of its low permeability, high sorption capacity, self sealing characteristics, and durability in nature. In this study, the potential for separation of bentonite particles caused by the groundwater erosion was studied experimentally for a Korean Ca-bentonite under the relevant repository conditions. Results showed that bentonite particles can be generated at the bentonite/granite interface and mobilized by the water flow although the intrusion of bentonite into fracture by swelling pressure was observed to be small. Different processes of mobilization of theses colloids from the compacted bentonite block have been identified in this study. The concentration of particles eluted in water was increased as the flow rate increased. Thus the result reveals that the erosion of the bentonite surface due to the groundwater flow together with intrusion processes is the main mechanism that can mobilize bentonite colloids in the fracture of the granite.

  • PDF

A Study on the Enhance of Air tightness Performance of a New Type Silding Window with horizontally Rolling Wheels (수평 구름 바퀴가 적용된 신 유형 미서기 창문의 기밀성능 개선에 관한 연구)

  • Jang, Hyok-Soo;Kim, Young-Il;Chuung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • Crevices between window and window frame cause not only heat losses but also serve path to sound transmission and infiltration of fine dusts that are harmful to humans. There were many efforts in the past to eliminate these crevices but because of the windows' indispensable function of opening and closing, it was an unsolvable problem. In this study, a new type sliding window is developed by applying horizontally rolling wheels to implement a surface sealing which is excellent for enhancing air tightness. To evaluate the feasibility of the newly developed window, forces for opening and closing, durability and air tightness were testet according to Korean Testing Standards. Force for opening a 2000 N window is 30 N. It endured 100,000 cycles of opening and closing. Infiltration was $0.00m^3/(m^2h)$ for a pressure difference of 10 Pa. Since this window has few moving parts, it has favorable features of low cost and few breakdown.

Fabrication and Adhesion Strength Evaluation of Glass Sealants for Ceramic to Ceramic Component Joining (세라믹-세라믹 컴포넌트 접합용 글라스 실란트의 제조 및 접합력 평가)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.89-94
    • /
    • 2019
  • Glass base sealant is required as a ceramic-ceramic joining material between α-alumina insulation cap and β-alumina electrolyte tube in the development of NaS battery cell package for electrical energy storage system. The fabrication of glass frit by thermal quenching method, phase analysis, particle size analysis, coefficient of thermal expansion and surface roughness according to the glass compositions were analyzed for the fabrication of glass sealing paste for ceramic-ceramic joining. Also, a new evaluation method of the adhesion strength of glass sealant at the small area in ceramic-ceramic joining component was proposed using conventional Dage bond tester that was used to measure the adhesion of solder ball joint.

Topology, Shape and Sizing Optimization of the Jig Supporting High Voltage Pothead (고전압 장비 지그의 동특성에 대한 위상, 형상 및 치수 최적화)

  • Choi, Bong-Kyun;Lee, Jae-Hwan;Kim, Young-Joong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.351-358
    • /
    • 2013
  • In the electric power supplying industry, outdoor sealing end (pothead) is used and sometimes it is necessary to check the seismic qualification analysis or test which is intended to demonstrate that the equipment have adequate integrity to withstand stress of the specified seismic event and still performs their function. And since the pothead is mounted on the supporting jig, the avoidance of resonance between the pothead and jig is required. In order to design jig, three types of optimization are performed to get the minimum weight while satisfying the natural frequency constraint using ANSYS. Optimal array, position and thickness of truss members of the jig are obtained through topology, shape and sizing optimization process, respectively. And seismic analysis of the pothead on the jig for given RRS acceleration computes the displacement and stress of the pothead which shows the safety of the pothead. The obtained natural frequency, mass, and member thickness of the jig are compared with those of the reference jig which was used for seismic experimental test. The numerical results of the jig in the research is more optimized than the jig used in the experimental test.

COMPLETE DENTURE IMPRESSION BY A SIMPLE FUNCTIONAL BORDER MODING (기능적 변연형성에 의한 총의치 인상채득법)

  • Hwang Euy-Hwan;Lee Jeong-Yol;Shin Sang-Wan;Suh Kyu-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.4
    • /
    • pp.515-525
    • /
    • 1994
  • Impression taking is a very important procedure in complete denture fabrication for reproduction of the tissue surface from which obtain retention and support of denture base. Therefore, we can not construct retentive denture without precise impression taking. Retention in complete denture can be obtained by the closest contact between denture base and underlying tissue, maximum coverage and proper displacement of the border tissue for peripheral sealing. Therefore, it is very important to take impression of the border tissue displaced properly. Nowadays, impression of the border tissue is mainly taken by the border molding techniques by means of manual muscle trimming, but due to various muscle trimming methods as clinicians, it is difficult to select proper method. This technique is also bodersome to do and time-consuming procedure. Retention is also likely reduced, because of the recording excessive muscle movement than actural physiological border tissue movement. Therefore, the impression technique that records actual physiologic functional muscle movement is helpful to increase denture retention and easy to do. We named this technique a functional border molding technique. This technique is originally introduced by D. J. Neill and R. I. Nairn in 1968. We tried to fabricate complete denture by the impression by means of functional border molding technique for better retention and the convenience, and obtained good results.

  • PDF

Application of Antifungal CFB to Increase the Durability of Cement Mortar

  • Park, Jong-Myong;Park, Sung-Jin;Kim, Wha-Jung;Ghim, Sa-Youl
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1015-1020
    • /
    • 2012
  • Antifungal cement mortar or microbiological calcium carbonate precipitation on cement surface has been investigated as functional concrete research. However, these research concepts have never been fused with each other. In this study, we introduced the antifungal calcite-forming bacteria (CFB) Bacillus aryabhattai KNUC205, isolated from an urban tunnel (Daegu, South Korea). The major fungal deteriogens in urban tunnel, Cladosporium sphaerospermum KNUC253, was used as a sensitive fungal strain. B. aryabhattai KNUC205 showed $CaCO_3$ precipitation on B4 medium. Cracked cement mortar pastes were made and neutralized by modified methods. Subsequently, the mixture of B. aryabhattai KNUC205, conidiospore of C. sphaerospermum KNUC253, and B4 agar was applied to cement cracks and incubated at $18^{\circ}C$ for 16 days. B. aryabhattai KNUC205 showed fungal growth inhibition against C. sphaerospermum. Furthermore, B. aryabhattai KNUC205 showed crack remediation ability and water permeability reduction of cement mortar pastes. Taken together, these results suggest that the $CaCO_3$ precipitation and antifungal properties of B. aryabhattai KNUC205 could be used as an effective sealing or coating material that can also prevent deteriorative fungal growth. This study is the first application and evaluation research that incorporates calcite formation with antifungal capabilities of microorganisms for an environment-friendly and more effective protection of cement materials. In this research, the conception of microbial construction materials was expanded.