• Title/Summary/Keyword: Seabed Mapping

Search Result 18, Processing Time 0.023 seconds

Development of Algorithms for Correcting and Mapping High-Resolution Side Scan Sonar Imagery (고해상도 사이드 스캔 소나 영상의 보정 및 매핑 알고리즘의 개발)

  • 이동진;박요섭;김학일
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.1
    • /
    • pp.45-56
    • /
    • 2001
  • To acquire seabed information, the mosaic images of the seabed were generated using Side Scan Sonar. Short time energy function which is needed for slant range correction is proposed to get the height of Tow-Fish to the reflected acoustic amplitudes of each ping, and that leads to a mosaic image without water column. While generating mosaic image, maximum value, last value and average value are used for the measure of a pixel in the mosaic image and 3-D information was kept by using acoustic amplitudes which were heading for specific direction. As a generating method of mosaic image, low resolution mosaic image which is over 1m/pixel resolution was generated for whole survey area first, and then high resolution mosaic image which is generated under 0.1m/pixel resolution was generated for the selected area. Rocks, ripple mark, sand wave, tidal flat and artificial fish reef are found in the mosaic image.

Development of a Seabed Mapping System using SeaBeam2000 Multibeam Echo Sounder Data (SeaBeam2000 다중빔 음향측심기를 이용한 해저면 맵핑시스템 개발)

  • 박요섭;김학일;이용국;석봉출
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.129-145
    • /
    • 1995
  • SeaBeam2000, a multibeam echo sounder, is a new generation seabed mapping system of which a single swath covers an angular range of -60.deg. to 60.deg. from the vertical direction with 121 beams. It provides high-density and high-quality bathymetric data along with sidescan acoustic data. The purpose of the research is to develop a system for processing multibeam underwater acoustic and bathymetric data using digital signal processing techniques. Recently obtained multibeam echo sounder data covering a survey area in the East Sea of Korea ($37{\circ}$.00'N to $37{\circ}$30'N and $129{\circ}$40'E to $130{\circ}$30'E) are preliminarily processed using the developed system and reproduced in the raster image format as well as three dimensionally visualized form.

Geophysical and Geological Exploration of Cobalt-rich Ferromanganese Crusts on a Seamount in the Western Pacific (서태평양 해저산 고코발트 망간각 자원평가를 위한 광역 탐사 방안)

  • Kim, Jonguk;Ko, Young-Tak;Hyeong, Kiseong;Moon, Jai-Woon
    • Economic and Environmental Geology
    • /
    • v.46 no.6
    • /
    • pp.569-580
    • /
    • 2013
  • Co-rich ferromanganese crusts (Fe-Mn crusts) distributed on the seamounts in the western Pacific are potential economic resources for cobalt, nickel, platinum, and other rare metals in the future. Regulations for prospecting and exploration of Fe-Mn crusts in the Area, which enables the process to obtain an exclusive exploration right for blocks of the fixed size, were enacted recently by the International Seabed Authority, which led to public attention on its potential for commercial development. Evaluation and selection of a mining site can be established based on abundance and grade of Fe-Mn crusts in the site as well as topography that should be smooth enough for mining efficiency. Therefore, acquisition of shipboard echo-sounding and acoustic backscatter data are prerequisite to select potential mine sites in addition to visual and sampling operations. Acoustic backscatter data can be used to locate crust-covered areas in a regional scale with the understanding of acoustic properties of crust through its correlation with visual and sampling data. KIOST had collected the topographic and geologic data to assess the resources potential for Fe-Mn crusts in the west Pacific region from 1994 to 2001. However, they could not obtain acoustic backscatter data that is crucial for the selection of prospective mining sites. Therefore, additional exploration surveys are required to carry out side scan sonar mapping combined with seafloor observation and sampling to decide the blocks for application of an exclusive exploration right.

Numerical modeling and simulation technique in time-domain for multibeam echo sounder

  • Jung, Donghwan;Kim, Jeasoo;Byun, Gihoon
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-234
    • /
    • 2018
  • A Multibeam Echo Sounder (MBES) is commonly used for rapid seafloor mapping. We herein present a time-domain integrated system simulation technique for MBES development. The Modeling and Simulation (M&S) modules consist of four parts: sensor array signal transmission, propagation and backscattering modeling in the ocean environment, beamforming of the received signals, and image processing. Also, the simulation employs a ray-theory-based algorithm to correct the reconstructed bathymetry, which has errors due to the refraction caused by the vertical sound velocity profile. The developed M&S technique enables design parameter verification and system parameter optimization for MBES. The framework of this technique can also be potentially used to characterize the seabed properties. Finally, typical seafloor images are presented and discussed.

The Study of Selecting a Test Area for Validating the Proposal Specification of InSAS(Interferometric Synthetic Aperture Sonar) (간섭계측 합성개구소나 성능 평가를 위한 해상 시험장 선정에 관한 연구)

  • Park, Yosup;Kim, Seong Hyeon;Koh, Jieun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This paper provides a case study of development testing and evaluation of design goal of Interferometric SAS (Synthetic Aperture Sonar) system that is developing supported by Civil-Military Technology Cooperation Center in offshore fields. For Deep water operating capabilities evaluation, We have surveyed candidate field, bathymetric mapping and target identification over 200 m depth, East Sea. In testing phase, We have provided environmental information of testing field include water column, seabed and weather condition in real time. And to compare excellency of developing InSAS, we have gather commercial imaging sonar system data with same target. This case study will support the Test Readiness Review of future underwater surveillance system developing via investigate marine testing field environment, testing facilities and planning.

Ultra High Resolution Shallow Acoustic Profiling using the Parametric Echo Sounder: Discrimination of Marine Contaminated Sediments and Burial Depth Inspection of the Submarine Cable (비선형 측심기를 이용한 초고해상 천부음향탐사: 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Seom-Kyu;Lee, Yong-Kuk;Kim, Seong-Ryul;Oh, Jae-Kyung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.8
    • /
    • pp.1222-1229
    • /
    • 2010
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling using parametric echo sounder is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. The parametric sub-bottom profiler system provides not only the exact determination of water depth, but also the detailed information about sediment layers and sub-bottom structures. Possible applications include dredging project, search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of the submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

Case Study of Ultra High Resolution Shallow Acoustic Profiling - Discrimination of the Marine Contaminated Sediment and Burial Depth Inspection of Submarine Cable (초고해상 천부음향탐사 사례 - 오염퇴적층 구분과 해저케이블 매설 검측)

  • Jung, Baek-Hoon;Lee, Yong-Kuk;Kim, Seong-Ryul;Shin, Dong-Hyeok;Jou, Hyeong-Tae
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.79-84
    • /
    • 2008
  • Compared to conventional high resolution acoustic profiling, ultra high resolution shallow acoustic profiling is limited in penetration, yet it provides resolution suitable for detailed seabed investigation in the shallow waters. Possible applications include search of buried pipeline, ship wrecks, and other artificial objects through the detailed mapping of thickness and structure of the upper sedimentary layers. In this study, contaminated sediments were discriminated by the correlation of ultra high resolution profiles with geologic data. In addition, the burial depth of submarine cable was measured by the interpretation of acoustic anomalies in the profiles.

  • PDF

A Study of Habitat Environment Mapping Using Detailed Bathymetry and Seafloor Data in the Southern Shore of the East Sea(Ilsan Beach, Ulsan) (정밀 해저지형 및 해저면 자료를 활용한 동해 남부 연안(울산 일산해변) 생태계 서식지 환경 맵핑 연구)

  • Choi, SoonYoung;Kim, ChangHwan;Kim, WonHyuck;Rho, HyunSoo;Park, ChanHong
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.717-731
    • /
    • 2021
  • We analyzed the characteristics of the habitat environment for the Seonam study area in Ulsan, the southern shore of the East Sea using bathymetry and seafloor environment data. The depth of the study area ranges from about 0 m to 23 m. In the west of the study area, the water depth is shallow with a gentle slope, and the water depth becomes deeper with a steep slope in the east. Due to the right-lateral strike-slip faults located in the continental margin of the East Sea, the fracture surfaces of the seabed rocks are mainly in the N-S direction, which is similar to the direction of the strike faults. Three seafloor types (conglomeratic-grained sandy, coasre-graiend sandy, fine-grained sandy) and rocky bottom area have been classified according to the analyses of the bathymerty, seafloor image, and surface sediment data. The rocky bottom areas are mainly distributed around Seaoam and in the northern and southern coastal area. But the intermediate zone between Seonam and coastal area has no rocky bottom. This intermediate area is expected to have active sedimentation as seawater way. The sandy sediments are widely distributed throughout the study area. Underwater images and UAV images show that Cnidarians, Brachiopods, Mollusks are mostly dominant in the shallow habitat and various Nacellidae, Mytilidae live on the intertidal zone around Seonam. Annelida and Arthropod are dominant in the sandy sediments. The distribution of marine organism in the study area might be greatly influenced by the seafloor type, the composition and particle size distribution of the seafloor sediments. The analysis of habitat environment mapping with bathymetry, seafloor data and underwater images is supposed to contribute to the study of the structure and function of marine ecosystem.