• Title/Summary/Keyword: Seabed

Search Result 582, Processing Time 0.029 seconds

Modeling of the Formation of Long Grooves in the Seabed by Grounded Ice Keels

  • Marchenko, Aleksey
    • Journal of Ship and Ocean Technology
    • /
    • v.7 no.4
    • /
    • pp.1-15
    • /
    • 2003
  • The motion of passively floating body, whose keel can have a contact with seabed soil, is under the consideration. The body simulates ice ridge floating in shallow water. The force of seabed soil reaction applied to the grounded keel is estimated taking into account soil embankment near the grounded keel. Two-dimensional trajectories of body motion, the shape of the grooves in seabed and the height of soil embankment are calculated when the motion of the body is caused by semidiurnal $M_2$ tide. The influence of wave amplitude and bottom slope on the shapes of body trajectory and the grooves are analyzed.

Nonlinear Dynamic Responses among Wave, Submerged Breakwater and Seabed ($\cdot$수중방파제$\cdot$지반의 비선형 동적응답에 관한 연구)

  • HAN DONG SOO;KIM CHANG HOON;YEOM CYEONG SEON;KIM DO SAM
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.6 s.67
    • /
    • pp.35-43
    • /
    • 2005
  • Recently, various-shaped coastal structures have been studied and developed. Among them, the submerged breakwater became generally known as a more effective structure than other structures, bemuse it not only serves its original function, but also has the ability to preserve the coastal environment. Most previous investigations have been focused on the wave deformation and energy dissipation due to submerged breakwater, but less interest was given to their internal properties and dynamic behavior of the seabed foundation under wave loadings. In this study, a direct numerical simulation (DNS) is newly proposed to study the dynamic interaction between a permeable submerged breakwater aver a sand seabed and nonlinear waves, including wave breaking. The accuracy of the model is checked by comparing the numerical solution with the existing experimental data related to wave $\cdot$ permeable submerged breakwater $\cdot$ seabed interaction, and showed fairly nice agreement between them. From the numerical results, based on the newly proposed numerical model, the properties of the wave-induced pore water pressure and the flow in the seabed foundation are studied. In relation to their internal properties, the stability oj the permeable submerged breakwater is discussed.

Method of Correcting Hyperspectral Image for Seabed Material Analysis of Coastal Area (연안 해저 재질 분석을 위한 초분광영상의 보정 방법)

  • SHIN, Myung-Sik;SHIN, Jung-Il;KIM, Ik-Jae;SUH, Yong-Cheol
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.107-116
    • /
    • 2016
  • Airborne or spaceborne remote sensing can increase the efficiency of seabed material surveys compared with field surveying using a vessel. For the same seabed material, the optical remote sensing image shows variation in the reflectance depending on the water depth, which is due to the absorption and scattering by the water column. This study suggests a correction procedure to use the hyperspectral image for seabed material analysis. The study is conducted in the coastal area from Sacheonjin Port to Gyungpo Beach in Gangwon-do. The hyperspectral image is acquired using the CASI-1500 sensor. The diffuse attenuation coefficient is estimated for each band through regression models between the water reflectance and depth. Then, the coefficient is applied to each band of the image. As a result, the completely corrected image can be interpreted for a deeper area, although the interpretable area is very shallow without water column correction. Additionally, the water column corrected image shows decreased variation of reflectance with various water depths.

Characteristic of holding power due to nature of seabed at anchor (묘박중 해저 저질에 따른 파주력 특성)

  • KIM, Byung-Yeob;KIM, Kwang-il;KIM, Min-son;NOBUO, Kimura;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.230-240
    • /
    • 2022
  • In general, a high tension on the anchor and chain is placed when a ship at anchor is subjected to heavy weather. Mariners have to pay attention to whether dragging anchor occurs to keep the safety of the ship at anchorage since it is difficult to maintain the stable motion of ship and it causes collisions with other ships nearby. In this paper, the ship motion against the external forces was shown to obtain the fundamental data about characteristic of holding power due to nature of seabed at anchor, so practical trials were carried out in rocky area and muddy area using a trial ship around coastal area of South Korea. In muddy seabed, holding power showed reasonable tension values depending on the distance from anchor position of continuing swing motions of a ship corresponding to wind force. Meanwhile in rocky seabed, tension values on the chain appeared very high occasionally regardless of the distance from the anchor position and seemed to exceed its holding power to be the breaking strain of the chain although weather was not in a severe condition. Therefore, some of the cables laid on the seabed were presumed to be caught in a crack on the rock. It is assumed that even a small amount of external force may cause the chain to break in a moment in rocky seabed. Additionally, wind and current forces had a somewhat contradictory effect on holding power of the ship between them.

Analysis of Performance Requirements of Mechanical System for Recovery of Deposited Hazardous and Noxious Substances from Seabed around Seaport (항만 해저침적 위험유해물질(HNS) 회수용 기계장치의 성능요건 분석)

  • Hwang, Ho-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.681-688
    • /
    • 2020
  • Approximately 6,000 chemicals are transported through the sea, including hazardous and noxious substances (HNS), which cause marine pollution and are harmful to marine life. The HNS discharged into the sea during the maritime transportation process undergoes physical and chemical changes on the sea surface and in seawater, and some types of HNS sink and are deposited on the seabed. The HNS deposited on the seabed adversely affects the benthic ecosystem, and hence, it is desirable to detect, treat, and recover the HNS on the seabed. Therefore, this study was conducted to analyze the performance requirements that should be considered as the top priority when developing a mechanical system for recovering the HNS deposited on the seabed. Various types of existing dredging devices used for collecting and recovering pollutants from river beds and seabeds were investigated, and 10 performance indices for the mechanical devices were selected. The new performance requirements for the development of the seabed-deposited HNS recovery system were proposed using performance indices. By considering the depth of water in domestic seaports, some of the performance requirements of the mechanical system for recovering deposited HNS from the seabed were obtained as follows: production rate (50-300 ㎥/hr), maximum operation depth (50 m), sediment type (most forms), percentage of solids (10 % or higher), horizontal operating accuracy (±10 cm), limiting currents (3-5 knots). These performance requirements are expected to be useful in the conceptual and basic design of mechanical systems for recovering seabed-deposited HNS.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater using Concrete Mat Cover (for Regular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석(규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.6
    • /
    • pp.361-374
    • /
    • 2016
  • When the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure is generated significantly due to pore volume change associated with rearrangement soil grains. This effect leads a seabed liquefaction around and under structures as a result from decrease in the effective stress, and the possibility of structure failure is increased eventually. These facts shown above have been investigated in the previous studies related to regular and irregular waves. This study suggested a concrete mat for preventing the seabed liquefaction near the submerged breakwater. The concrete mat was mainly used as a countermeasure for scouring protection in riverbed. According to installation of the concrete mattress, the time and spatial series of the deformation of submerged breakwater, the pore water pressure, and the pore water pressure ratio in the seabed were investigated. Their results were also compared with those of the seabed unprotected with the concrete mat. The results presented were confirmed that the liquefaction potential of seabed under the concrete mattress is significantly reduced under regular wave field.

Seabed Sediment Feature Extraction Algorithm using Attenuation Coefficient Variation According to Frequency (주파수에 따른 감쇠계수 변화량을 이용한 해저 퇴적물 특징 추출 알고리즘)

  • Lee, Kibae;Kim, Juho;Lee, Chong Hyun;Bae, Jinho;Lee, Jaeil;Cho, Jung Hong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.1
    • /
    • pp.111-120
    • /
    • 2017
  • In this paper, we propose novel feature extraction algorithm for classification of seabed sediment. In previous researches, acoustic reflection coefficient has been used to classify seabed sediments, which is constant in terms of frequency. However, attenuation of seabed sediment is a function of frequency and is highly influenced by sediment types in general. Hence, we developed a feature vector by using attenuation variation with respect to frequency. The attenuation variation is obtained by using reflected signal from the second sediment layer, which is generated by broadband chirp. The proposed feature vector has advantage in number of dimensions to classify the seabed sediment over the classical scalar feature (reflection coefficient). To compare the proposed feature with the classical scalar feature, dimension of proposed feature vector is reduced by using linear discriminant analysis (LDA). Synthesised acoustic amplitudes reflected by seabed sediments are generated by using Biot model and the performance of proposed feature is evaluated by using Fisher scoring and classification accuracy computed by maximum likelihood decision (MLD). As a result, the proposed feature shows higher discrimination performance and more robustness against measurement errors than that of classical feature.

Simulation of Solitary Wave-Induced Dynamic Responses of Soil Foundation Around Vertical Revetment (고립파 작용하 직립호안 주변에서 지반의 동적응답에 관한 수치시뮬레이션)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.6
    • /
    • pp.367-380
    • /
    • 2014
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The targeted coastal structure object in this study can be damaged mainly by the tsunami force together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the solitary wave was generated using 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the estimated surface boundary of the vertical revetment. Simulation results were used as an input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure, effective stress, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Bore-induced Dynamic Responses of Revetment and Soil Foundation (단파작용에 따른 호안과 지반의 동적응답 해석)

  • Lee, Kwang-Ho;Yuk, Seung-Min;Kim, Do-Sam;Kim, Tae-Hyeong;Lee, Yoon-Doo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.63-77
    • /
    • 2015
  • Tsunami take away life, wash houses away and bring devastation to social infrastructures such as breakwaters, bridges and ports. The coastal structure targeted object in this study can be damaged mainly by the wave pressure together with foundation ground failure due to scouring and liquefaction. The increase of excess pore water pressure composed of oscillatory and residual components may reduce effective stress and, consequently, the seabed may liquefy. If liquefaction occurs in the seabed, the structure may sink, overturn, and eventually increase the failure potential. In this study, the bore was generated using the water level difference, its propagation and interaction with a vertical revetment analyzed by applying 2D-NIT(Two-Dimensional Numerical Irregular wave Tank) model, and the dynamic wave pressure acting on the seabed and the surface boundary of the vertical revetment estimated by this model. Simulation results were used as input data in a finite element computer program(FLIP) for elasto-plastic seabed response. The time and spatial variations in excess pore water pressure ratio, effective stress path, seabed deformation, structure displacement and liquefaction potential in the seabed were estimated. From the results of the analysis, the stability of the vertical revetment was evaluated.

Seabed Classification Using the K-L (Karhunen-Lo$\grave{e}$ve) Transform of Chirp Acoustic Profiling Data: An Effective Approach to Geoacoustic Modeling (광역주파수 음향반사자료의 K-L 변환을 이용한 해저면 분류: 지질음향 모델링을 위한 유용한 방법)

  • Chang, Jae-Kyeong;Kim, Han-Joon;Jou, Hyeong-Tae;Suk, Bong-Chool;Park, Gun-Tae;Yoo, Hai-Soo;Yang, Sung-Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.3
    • /
    • pp.158-164
    • /
    • 1998
  • We introduce a statistical scheme to classify seabed from acoustic profiling data acquired using Chirp sonar system. The classification is based on grouping of signal traces by similarity index, which is computed using the K-L (Karhunen-Lo$\grave{e}$ve) transform of the Chirp profiling data. The similarity index represents the degree of coherence of bottom-reflected signals in consecutive traces, hence indicating the acoustic roughness of the seabed. The results of this study show that similarity index is a function of homogeneity, grain size of sediments and bottom hardness. The similarity index ranges from 0 to 1 for various types of seabed material. It increases in accordance with the homogeneity and softness of bottom sediments, whereas it is inversely proportional to the grain size of sediments. As a real data example, we classified the seabed off Cheju Island, Korea based on the similarity index and compared the result with side-scan sonar data and sediment samples. The comparison shows that the classification of seabed by the similarity index is in good agreement with the real sedimentary facies and can delineate acoustic response of the seabed in more detail. Therefore, this study presents an effective method for geoacoustic modeling to classify the seafloor directly from acoustic data.

  • PDF